
small however, contributing a difference of only!1 LL points,
despite the large number of site patterns in this category.
Approximately 45% of sites had mixed site patterns, and these
accounted for 39 out of the 42 LL points difference between
RaMoSS and RaMoSSwDT. This demonstrates that mixed site
patterns are more likely when the model permits fixation of

DT mutations. Critically, mixed site patterns are also more
likely to exhibit heterotachy (Jones et al. 2017). Of the
297 site patterns with a posterior probability of switch-
ing> 0.80 (computed using RaMoSSwDT), 289 had mixed
site patterns. The remaining 8 were among the site patterns
with nonsynonymous differences only. This suggests that the

Table 1. Log-Likelihood (LL) and Parameter Estimates for Each Model Fitted to the Mammalian mtDNA Alignment Shown in figure 1.

Model LL Rate Ratios Proportions Switching S, D, T

Ms !26,752
M0 !92,006 x̂0 ¼ 0:04
M3 !89,162 ðx̂0; x̂1Þ ¼ ð0:01; 0:15Þ p̂0 ¼ 0:71
CLM3 !88,880 ðx̂0; x̂1Þ ¼ ð0:00; 0:21Þ p̂0 ¼ 0:77 d̂ ¼ 0:06
RaMoSS !88,677 ðx̂0; x̂1Þ ¼ ð0:00; 0:08Þ p̂M3 ¼ 0:73; p̂0 ¼ 0:80

ðx̂00; x̂01Þ ¼ ð0:01; 0:44Þ p̂00 ¼ 0:66 d̂ ¼ 0:21
M0wDT !91,280 x̂0 ¼ 0:03 76.4%, 21.5%, 2.1%
M3wDT !88,930 ðx̂0; x̂1Þ ¼ ð0:01; 0:12Þ p̂0 ¼ 0:71 83.0%, 16.7%, 0.3%
CLM3wDT !88,786 ðx̂0; x̂1Þ ¼ ð0:00; 0:16Þ p̂0 ¼ 0:75 d̂ ¼ 0:06 86.5%, 13.5%, 0.0%
RaMoSSwDT !88,635 ðx̂0; x̂1Þ ¼ ð0:00; 0:08Þ p̂M3 ¼ 0:68; p̂0 ¼ 0:80 90.3%, 9.7%, 0.0%

ðx̂00; x̂01Þ ¼ ð0:02; 0:34Þ p̂00 ¼ 0:73 d̂ ¼ 0:12

Table 2. Results for Model Contrasts Applied to the Mammalian mtDNA Alignment Shown in figure 1.

Contrast Testing For. . . LLR Crit.val. Detected PRD

M0 vs. M3 var. across sites 5,668 5.99 Yes 4.36%
M3 vs. CLM3 var. across time 564 2.71 Yes 0.43%
CLM3 vs. RaMoSS static and switching sites 406 9.49 Yes 0.31%
M0 vs. M0wDT DT mutations 1,452 5.99 Yes 1.11%
M3 vs. M3wDT DT mutations 464 5.99 Yes 0.36%
CLM3 vs. CLM3wDT DT mutations 188 5.99 Yes 0.14%
RaMoSS vs. RaMoSSwDT DT mutations 84 5.99 Yes 0.06%

African
chimpanzee
bonobo
gorilla
orangutan
Sumatran orangutan
common gibbon
harbor seal
grey seal
cat
horse
Indian rhinoceros
cow
fin whale
blue whale
rat
mouse
wallaroo
opossum
platypus

FIG. 1. The phylogeny for the concatenation of 12 H-strand mitochondrial DNA sequences (3,331 codon sites) from 20 mammalian species
distributed by the PAML software package (Yang 2007). The topology is that reported in Cao et al. (1998). Branch lengths (expected number of
single nucleotide substitutions per codon) were estimated using RaMoSSwDT (the best fitting of the models used in this study). The scale on the
horizontal axis is the number of single nucleotide substitution per codon.
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Turning to the tests for fixation of DT mutations, the
contrast involving the simplest selection submodel (M0 vs.
M0wDT) incorrectly inferred DT mutations in all 100 trials
(table 4). Again, improving the selection submodel substan-
tially reduced the false positive rate. Even limited accommo-
dation of variations in rate ratio across sites using M3 (e.g.,
with only two rate-ratio categories) reduced the false positive
rate to 10/100. This was reduced further to only 3/100 and 5/
100 by CLM3 versus CLM3wDT and RaMoSS versus
RaMoSSwDT. These rates are consistent with the 5% level
of significance of the likelihood ratio test, and seem to imply
that both CLM3 versus CLM3wDT and RaMoSS versus
RaMoSSwDT will reliably fail to detect the fixation of DT
mutations when they do not occur. However, the generating
model M3(k¼ n) is unrealistic, and in particular does not
simulate heterotachy or variations in site-specific amino
acid propensities. A more rigorous test of the reliability of
the RaMoSS versus RaMoSSwDT contrast for detecting DT
requires use of a more realistic alignment-generating process.

Simulation Study 3: RaMoSS versus RaMoSSwDT Is
Unreliable When Fitted to Data Generated Using
MutSel-mmtDNA
The M3(k¼ n) generating model reflects the traditional ap-
proach of testing the impact of model misspecification by
simulating alignments using a more complex CSM. However,
the absence of heterotachy and site-specific stationary fre-
quencies means that the simulated distribution of site pat-
terns can only be unrealistic compared with the real mtDNA
alignment. In the third simulation study, one-hundred 300-
codon alignments were generated on the tree depicted in
figure 1 using the generating process we call MutSel-
mmtDNA, which was formulated to produce alignments
that match the real mtDNA alignment as closely as possible.
In this section, we report the results of the model fits; the
results of comparisons between alignments generated using
MutSel-mmtDNA and the real alignment are reported in the
next section. Comparison with table 1 shows that median
parameter estimates (reported in supplementary table 3,
Supplementary Material online) under RaMoSS were similar
to those estimated from the real mtDNA alignment using the
same model (we use RaMoSS rather than RaMoSSwDT for
this comparison because the alignments were simulated with-
out DT substitutions). The median values under RaMoSS
were: x̂0 ¼ 0:00 ðcompared to x̂0 ¼ 0:00 for the real
mtDNAÞ; x̂1 ¼ 0:12 ð0:08Þ; p̂0 ¼ 0:82 ð0:80Þ; x̂00 ¼
0:00 ð0:01Þ; x̂01 ¼ 0:56 ð0:44Þ; p̂00 ¼ 0:60 ð0:66Þ; p̂M3 ¼
0:80 ð0:73Þ and^d¼ 0:20 ð0:21Þ. These results suggest a
substantial degree of “phenomenological similarity” between
the real and simulated alignments. Note that this was not by
design, since the MLEs derived from the real mtDNA align-
ment were not used in the formulation of MutSel-mmtDNA;
the similarity was a consequence of the method used to
generate site-specific fitness coefficients (see Supplementary
Material online).

The impact of PL when the models were fitted to align-
ments generated under MutSel-mmtDNA is apparent in

table 4. The contrast involving the simplest selection submo-
del (M0 vs. M0wDT) incorrectly inferred DT in all 100 trials, as
might be expected given previous results. However, unlike the
previous two simulation studies, accounting for variations in
rate ratio across sites (M3 vs. M3wDT) had negligible impact
on the false positive rate (97/100). Although accounting for
heterotachy (CLM3 vs. CLM3wDT and RaMoSS vs.
RaMoSSwDT) reduced the number of false positives (to 76/
100 and 41/100, respectively), the lowest rate was still too
large given the 5% level of significance of the test. We con-
clude that the selection submodel for RaMoSS is underspe-
cified with respect to MutSel-mmtDNA, with the result that
substantial PL was conferred onto â and b̂ in a large number
of trials.

It now seems plausible that the detection of DT in the real
mtDNA was a false positive due to PL. If we can assume that
MutSel-mmtDNA produces alignments consistent with the
real data, then it can be used to estimate the distribution of
PLðâ; b̂Þ for each of the M versus MwDT model contrasts. To
this end, MutSel-mmtDNA was used to generate 50 full-scale
alignments, each with 3,331 codon sites, without fixation of
DT mutations. Each model contrast was fitted to produce
distributions of PRDðâ; b̂Þ. Because a and b were set to 0 in
the generating process, we can equate PRD to PL. The result-
ing distributions are shown as boxplots in figure 2, where the
previously described decline in the PRDðâ; b̂Þ obtained by
fitting the contrasts to the real mtDNA (last column of ta-
ble 2) is reflected by a similar decline in the median PLðâ; b̂Þ
with each incremental increase in the complexity of the se-
lection submodel.

The diamond in each boxplot of figure 2 marks the
PRDðâ; b̂Þ for the corresponding contrast fitted to the real
mtDNA alignment. This value falls just within the upper tail of
the estimated distribution of PLðâ; b̂Þ for the RaMoSS versus
RaMoSSwDT contrast. For comparison, a single full-sized
alignment was generated using MutSel-mmtDNA with a
and b set to the values estimated by RaMoSSwDT fitted to

FIG. 2. Boxplots show the distribution of PL(â; b̂) for each of the M
versus MwDT model contrasts fitted to 50 full-scale alignments (20
taxa, 3,331 codon sites) generated under MutSel-mmtDNA with
a ¼ b ¼ 0. Diamonds show PRD(â; b̂) for each contrast fitted to
the real mtDNA. Squares show the PRD(â; b̂) for each contrast fitted
to a full-scale alignment generated under MutSel-mmtDNA with a
and b set to values estimated from the real mtDNA using
RaMoSSwDT. Circles indicate outliers in PL(â; b̂) for the correspond-
ing boxplot.
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Qx ¼ M ! ðIS þ xINÞ (10)

where % represents the entrywise matrix product, IS is an
indicator matrix whose ði; jÞth element is one if iand jare
synonymous and 0 otherwise, and IN similarly indicates non-
synonymous codon pairs (the diagonal elements of Qx are
adjusted to make its rows sum to 0). The row vector of sta-
tionary codon frequencies p ¼ hp1; . . .; p60i associated with
equation (10) is independent of x and can be found by
solving pM ¼ 0. Hence, p is determined by the mutation
process alone and is the same for all Qx. It is convenient to
specify M3 using a compound rate matrix defined as follows:

QM3 ¼
1

r

Qx0 0

0 Qx1

" #

(11)

The state space for M3 consists of 120 ðcodon; rate ratioÞ
pairs. CLM3 can be specified in a similar way, but requires two
compound rate matrices, one for substitutions and the other
for switches between x0

0 and x1
0 (cf. Guindon et al. 2004):

QCLM3 ¼
1

r

Qx0
0 0

0 Qx1
0

" #

þ d
c

&ð1& p0
0ÞI ð1& p0

0ÞI

p0
0I &p0

0I

" #

(12)

By this formulation, a site evolving under CLM3 is allowed
to change either its codon or its rate ratio at any instant, but
never both.

The value of the scaling constant r in equations (11) and
(12) can be specified to make branch length equivalent to the
expected number of single nucleotide substitutions per co-
don. Assuming a common mutation process M, the scaling
factor for any individual rate matrix depends only on x and
can be specified as follows:

rx ¼
X

ði;jÞ
piQxði; jÞf‘1 þ 2‘2 þ 3‘3g (13)

The indicator ‘n is one if iand jdiffer by n 2 f1; 2; 3g
nucleotides and 0 otherwise. The scaling constant r is con-
structed by taking into account both the proportion p0 of static
sites evolving underx0 and the proportion 1& p0 of sites evolv-
ing under x1, as well as the expected proportion of time a
switching spends evolving under x0

0 (i.e., p0
0) or x1

0 (1& p0
0):

r ¼ pM3ðp0rx0 þ ð1& p0Þrx1Þ
þ ð1& pM3Þðp0

0rx0
0 þ ð1& p0

0Þrx1
0Þ (14)

The matrix governing the switching process in equation
(12) can be scaled to make d the expected number of
switches per unit branch length. The scaling parameter c is
determined by multiplying the diagonal matrix D whose
entries are equal to the vector of stationary frequenices for
the state pairs under CLM3:

hp0
0p1; . . .; p0

0p60; ð1& p0
0Þp1; . . .; ð1& p0

0Þp60i (15)

with the switching matrix in equation (12), and then sum-
ming over all values corresponding to a switch in rate ratio

(i.e., summing over all but the elements on the main diago-
nal). It can be shown that the resulting scaling factor is:

c ¼ 2
X60

i¼1

p0
0ð1& p0

0Þpi¼ 2p0
0ð1& p0

0Þ (16)

Scaling the switching matrix in this way was first proposed
by Jones et al. (2017). However, their equation for the scaling
parameter c (labeled r2 in eq. 22 of that article) contained an
error that made r2 ¼ 0. Equation (16) corrects this.

The likelihood for RaMoSS is a weighted average of the
likelihoods for the M3 and CLM3 components, each of
which is computed using the pruning algorithm
(Felsenstein 1981):

LRaMoSSðhRaMoSSjX; TÞ ¼ pM3LM3ðhM3jX; TÞ
þ ð1& pM3ÞLCLM3ðhCLM3jX;TÞ

(17)

where X represents the alignment, T the topology of the tree,
and hRaMoSS a vector that includes the model parameters for
both M3 and CLM3, as well as an additional parameter pM3

for the proportion of sites evolving under M3. The posterior
probability of heterotachy at the hth site (see table 3) can be
computed from the MLE for hRaMoSS using the standard naive
Bayesian approach:

Pðswitchingjxh; ĥRaMoSSÞ ¼
LCLM3ðxhjĥCLM3; TÞð1& p̂M3Þ

LM3ðxhjĥM3; TÞp̂M3 þ LCLM3ðxhjĥCLM3; TÞð1& p̂M3Þ

(18)

where xh is the site pattern.

Model Contrasts
Nested models (a null model vs. an alternative, e.g., M0 vs.
M0wDT) can be compared using a log-likelihood ratio test.
The null hypothesis is that the data were generated under the
simpler of the two models (e.g., M0). This is rejected if the log-
likelihood ratio (LLR) for the test is larger than a critical value
determined by the limiting distribution of the log-likelihood
ratio statistic and the level of significance of the test. In this
article, the models M0, M3, CLM3, and RaMoSS were fitted to
real and simulated alignments. Each allows single nucleotide
mutations only (e.g., a ¼ b ¼ 0 in eq. 9). The four models
have counterparts that allow double and triple mutations
(e.g., a and b in eq. 9 are estimated): M0wDT, M3wDT,
CLM3wDT, and RaMoSSwDT. The contrast between M and
MwDT provides a test for DT mutations, where M
2 fM0; M3; CLM3; RaMoSSg. In a similar fashion, the
M0-M3 contrast provides a tests for variation in the rate ratio
across sites; M3-CLM3 provides a test for variations in the rate
ratio over time; and CLM3-RaMoSS provides a test for a com-
bination of static and switching sites in the same alignment
compared with switching sites only. The limiting distribution
of the LLR statistic is often unknown. In such cases, it is
standard practice to use a distribution that is thought to be
more conservative (i.e., less likely to reject the null hypothesis)
than the unknown true distribution.
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Qx ¼ M ! ðIS þ xINÞ (10)

where % represents the entrywise matrix product, IS is an
indicator matrix whose ði; jÞth element is one if iand jare
synonymous and 0 otherwise, and IN similarly indicates non-
synonymous codon pairs (the diagonal elements of Qx are
adjusted to make its rows sum to 0). The row vector of sta-
tionary codon frequencies p ¼ hp1; . . .; p60i associated with
equation (10) is independent of x and can be found by
solving pM ¼ 0. Hence, p is determined by the mutation
process alone and is the same for all Qx. It is convenient to
specify M3 using a compound rate matrix defined as follows:

QM3 ¼
1

r

Qx0 0

0 Qx1

" #

(11)

The state space for M3 consists of 120 ðcodon; rate ratioÞ
pairs. CLM3 can be specified in a similar way, but requires two
compound rate matrices, one for substitutions and the other
for switches between x0

0 and x1
0 (cf. Guindon et al. 2004):

QCLM3 ¼
1

r

Qx0
0 0

0 Qx1
0

" #

þ d
c

&ð1& p0
0ÞI ð1& p0

0ÞI

p0
0I &p0

0I

" #

(12)

By this formulation, a site evolving under CLM3 is allowed
to change either its codon or its rate ratio at any instant, but
never both.

The value of the scaling constant r in equations (11) and
(12) can be specified to make branch length equivalent to the
expected number of single nucleotide substitutions per co-
don. Assuming a common mutation process M, the scaling
factor for any individual rate matrix depends only on x and
can be specified as follows:

rx ¼
X

ði;jÞ
piQxði; jÞf‘1 þ 2‘2 þ 3‘3g (13)

The indicator ‘n is one if iand jdiffer by n 2 f1; 2; 3g
nucleotides and 0 otherwise. The scaling constant r is con-
structed by taking into account both the proportion p0 of static
sites evolving underx0 and the proportion 1& p0 of sites evolv-
ing under x1, as well as the expected proportion of time a
switching spends evolving under x0

0 (i.e., p0
0) or x1

0 (1& p0
0):

r ¼ pM3ðp0rx0 þ ð1& p0Þrx1Þ
þ ð1& pM3Þðp0

0rx0
0 þ ð1& p0

0Þrx1
0Þ (14)

The matrix governing the switching process in equation
(12) can be scaled to make d the expected number of
switches per unit branch length. The scaling parameter c is
determined by multiplying the diagonal matrix D whose
entries are equal to the vector of stationary frequenices for
the state pairs under CLM3:

hp0
0p1; . . .; p0

0p60; ð1& p0
0Þp1; . . .; ð1& p0

0Þp60i (15)

with the switching matrix in equation (12), and then sum-
ming over all values corresponding to a switch in rate ratio

(i.e., summing over all but the elements on the main diago-
nal). It can be shown that the resulting scaling factor is:

c ¼ 2
X60

i¼1

p0
0ð1& p0

0Þpi¼ 2p0
0ð1& p0

0Þ (16)

Scaling the switching matrix in this way was first proposed
by Jones et al. (2017). However, their equation for the scaling
parameter c (labeled r2 in eq. 22 of that article) contained an
error that made r2 ¼ 0. Equation (16) corrects this.

The likelihood for RaMoSS is a weighted average of the
likelihoods for the M3 and CLM3 components, each of
which is computed using the pruning algorithm
(Felsenstein 1981):

LRaMoSSðhRaMoSSjX; TÞ ¼ pM3LM3ðhM3jX; TÞ
þ ð1& pM3ÞLCLM3ðhCLM3jX;TÞ

(17)

where X represents the alignment, T the topology of the tree,
and hRaMoSS a vector that includes the model parameters for
both M3 and CLM3, as well as an additional parameter pM3

for the proportion of sites evolving under M3. The posterior
probability of heterotachy at the hth site (see table 3) can be
computed from the MLE for hRaMoSS using the standard naive
Bayesian approach:

Pðswitchingjxh; ĥRaMoSSÞ ¼
LCLM3ðxhjĥCLM3; TÞð1& p̂M3Þ

LM3ðxhjĥM3; TÞp̂M3 þ LCLM3ðxhjĥCLM3; TÞð1& p̂M3Þ

(18)

where xh is the site pattern.

Model Contrasts
Nested models (a null model vs. an alternative, e.g., M0 vs.
M0wDT) can be compared using a log-likelihood ratio test.
The null hypothesis is that the data were generated under the
simpler of the two models (e.g., M0). This is rejected if the log-
likelihood ratio (LLR) for the test is larger than a critical value
determined by the limiting distribution of the log-likelihood
ratio statistic and the level of significance of the test. In this
article, the models M0, M3, CLM3, and RaMoSS were fitted to
real and simulated alignments. Each allows single nucleotide
mutations only (e.g., a ¼ b ¼ 0 in eq. 9). The four models
have counterparts that allow double and triple mutations
(e.g., a and b in eq. 9 are estimated): M0wDT, M3wDT,
CLM3wDT, and RaMoSSwDT. The contrast between M and
MwDT provides a test for DT mutations, where M
2 fM0; M3; CLM3; RaMoSSg. In a similar fashion, the
M0-M3 contrast provides a tests for variation in the rate ratio
across sites; M3-CLM3 provides a test for variations in the rate
ratio over time; and CLM3-RaMoSS provides a test for a com-
bination of static and switching sites in the same alignment
compared with switching sites only. The limiting distribution
of the LLR statistic is often unknown. In such cases, it is
standard practice to use a distribution that is thought to be
more conservative (i.e., less likely to reject the null hypothesis)
than the unknown true distribution.
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Phenomenological load


