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Abstract

To detect positive selection at individual amino acid sites, most methods use an empirical Bayes approach. After
parameters of a Markov process of codon evolution are estimated via maximum likelihood, they are passed to Bayes
formula to compute the posterior probability that a site evolved under positive selection. A difficulty with this approach
is that parameter estimates with large errors can negatively impact Bayesian classification. By assigning priors to some
parameters, Bayes Empirical Bayes (BEB) mitigates this problem. However, as implemented, it imposes uniform priors,
which causes it to be overly conservative in some cases. When standard regularity conditions are not met and parameter
estimates are unstable, inference, even under BEB, can be negatively impacted. We present an alternative to BEB called
smoothed bootstrap aggregation (SBA), which bootstraps site patterns from an alignment of protein coding DNA
sequences to accommodate the uncertainty in the parameter estimates. We show that deriving the correction for
parameter uncertainty from the data in hand, in combination with kernel smoothing techniques, improves site specific
inference of positive selection. We compare BEB to SBA by simulation and real data analysis. Simulation results show that
SBA balances accuracy and power at least as well as BEB, and when parameter estimates are unstable, the performance
gap between BEB and SBA can widen in favor of SBA. SBA is applicable to a wide variety of other inference problems in
molecular evolution.

Key words: adaptive evolution, positive selection, codon models, bootstrap, kernel smoothing, Bayes empirical Bayes.

Introduction
Identifying positively selected amino acid sites is a challenging
statistical task that is important for investigating the func-
tional consequences of molecular change (Yang 2005).
Several approaches have been developed to detect positive
selection within a protein [reviewed in Pond and Frost (2005)
and Anisimova and Kosiol (2009)], but their reliability varies
according to the properties of the data in hand. The most
widely used methods employ a codon model to detect an
excess in the nonsynonymous substitutions relative to syn-
onymous substitutions (dN=dS ¼ x > 1), which is an indi-
cation of evolution by positive selection. Proteins evolving
under positive selection must retain the capacity to fold
into complex structural and functional domains, so the ma-
jority of amino acid substitutions will be subject to purifying
selection pressure, with x < 1 (Kimura 1968). From exten-
sive surveys of positive selection in real genes, we expect that
only a small fraction of amino acid sites will be subject to
adaptive change and exhibit an x > 1 (Anisimova et al. 2007;
Ge et al. 2008). The sparseness of these sites makes them
challenging to identify.

Two general categories of methods for detecting posi-
tively selected amino acid sites include counting and

fixed-effect methods. Counting methods employ ancestral
reconstruction of codon states for all internal nodes of a
phylogenetic tree to obtain counts of the synonymous and
nonsynonymous changes along each of its branches. The
counts inferred for a given site are used to test if x 6¼ 1.
Some counting methods use parsimony (Fitch et al. 1997;
Bush et al. 1999; Suzuki and Gojobori 1999), and others
likelihood (Nielsen 2002; Nielsen and Huelsenbeck 2002;
Suzuki 2004; Suzuki and Nei 2004; Pond and Frost 2005)
to infer the ancestral codon states. The reconstructions are
often similar, but under the likelihood approach uncer-
tainty about the inference can be summarized via the pos-
terior probabilities of the ancestral states. Thus, the
parsimony based methods must assume that these uncer-
tainties are irrelevant to the statistical test. While this makes
the approach attractive for very large datasets where reli-
able reconstructions can be obtained relatively quickly
(Lemey et al. 2012), widespread use is hindered by a lack
of power when the level of divergence is too low or by the
negative impact of substitutional saturation when the level
of divergence is too high (Pond and Frost 2005).

An alternative approach is to treat each site as indepen-
dently relevant to the question of evolution by positive

A
rticle

� The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
All rights reserved. For permissions, please e-mail: journals.permissions@oup.com

2976 Mol. Biol. Evol. 33(11):2976–2989 doi:10.1093/molbev/msw160 Advance Access publication August 2, 2016

D
ow

nloaded from
 https://academ

ic.oup.com
/m

be/article-abstract/33/11/2976/2271860 by guest on 12 O
ctober 2019

Deleted Text: ile


selection, and attempt to fit an x parameter to the data at
each site. Thus, the effect of each site on the task of x infer-
ence is fixed. Model based testing for x 6¼ 1 can be carried
out via a standard likelihood ratio test (LR), and no assump-
tions are required about the distribution of selection pressure,
x. Although x is treated as a site-specific variable, other
important variables in the codon model (e.g., branch lengths)
are shared among sites, with their values estimated jointly
from the complete set of sites. Results obtained using these
modeling ideas (Massingham and Goldman 2005; Pond and
Frost 2005) are encouraging, and we expect this family of
methods will continue to have a role in real data analyses
(Scheffler et al. 2014). However, v2 approximations to the
distribution of the test statistic assume relatively large num-
bers of taxa, which is often not the case. The lack of indepen-
dence of data across taxa that is due to phylogeny creates
further difficulties for v2 approximations.

A third approach for detecting positive selection at amino
acid sites, which is the focus of this article, treats the value of
x at a site as the realized value of a random variable. A
particular model for the distribution of x is chosen and max-
imum likelihood (ML) is used to fit the distribution to the
data as part of an explicit model of codon evolution. There
are recommendations (Yang and Nielsen 1998) to use a pre-
screen that fits two models: one with a distribution that ex-
cludes values of x > 1, and another with the same distribu-
tion, except with weight on values of x > 1 permitted. This
nested-model pre-screening is used to test if the data conveys
any evidence of positive selection. When the null hypothesis
of no positive selection is rejected using a LR test, site-wise
analysis is warranted. Site-wise analysis is carried out using
Bayes rule to calculate the posterior probability that a site h
evolved under some estimated value of x, given the data at
site h. This approach is referred to as empirical Bayes (EB)
because the marginal distribution of x is determined from
the data. Conclusions regarding the evolution at a site are
made based on the estimated x-values along with their as-
sociated posterior probabilities conditioned on the data at
the site. For example, when the largest posterior probability
for a site is associated with a value of x > 1, this is taken as
evidence of positive selection at that site.

Because the marginal distribution of x is determined from
the data and the site posterior probabilities always depend on
the fitted values of the model parameters (shape parameters
of the distribution, edge lengths, etc.), the reliability of EB
inference depends on the accuracy of the fitted values. If
they have been accurately estimated, as is often the case
with large, information-rich datasets, they can simply be
treated as known without errors. This approach is known
as the naı̈ve empirical Bayes approach (NEB) (Nielsen and
Yang 1998). However, when the fitted values are subject to
large errors, the detection of positive selection according to
the posterior probabilities can be negatively impacted and in
some cases the false positive rate can be unacceptably high
(Wong et al. 2004). Bayes empirical Bayes (BEB), has been used
to adjust for uncertainty in the parameters of the x distribu-
tion by assigning priors to those parameters and using nu-
merical integration to average over the uncertainty

represented by the priors (Yang et al. 2005). Because this
tactic can substantially reduce the false positive rate relative
to NEB in problematic datasets, BEB has become a popular
method for inferring the action of selection at individual sites.
A fully Bayesian approach that also assigns priors to
edge-lengths and other parameters is available for the infer-
ence of positive selection at sites (Aris-Brosou 2003;
Huelsenbeck and Dyer 2004), but it is not as widely employed
as EB because it is available for a limited set of models.

BEB does have limitations. As currently implemented, the
BEB approach only accommodates uncertainty in the param-
eters of the x distribution, leaving all others fixed to their
fitted values. Furthermore, only uniform priors are used,
which means the adjustment for uncertainty is independent
of the signal in the data. Although these will not be serious
limitations for many analyses of real data, we show through
simulation and real data analysis that deriving the adjustment
for parameter uncertainty from the data can improve infer-
ence for some datasets. To avoid the need for priors, we
developed a new approach that uses bootstrapping (Efron
1979, 1982) of site patterns to simulate dataset variability and
adjust for the uncertainty in the data. From bootstrap data-
sets, the distribution of the maximum likelihood estimates
(MLEs) are estimated. The posterior probabilities for positive
selection at a site is then obtained using an aggregate value
coming from MLEs over bootstrapped data sets, rather than
according to a single posterior probability obtained under
NEB or BEB. In principle, bootstrap-based methods should
use as many replicates as possible to approximate the infinite-
sample bootstrap distribution. As this is computationally ex-
pensive, we use smoothing techniques borrowed from kernel
density estimation (Silverman and Young 1987; Davison and
Hinkley 1997, Section 3.4) to obtain an approximation with
less computational cost. We refer to this new approach as
smoothed bootstrap aggregation (SBA). Our simulation re-
sults show that SBA balances accuracy and power at least as
well as BEB.

We also investigated the behavior of ML estimation when
standard regularity conditions, such as the requirement that
true parameter values be in the interior of the parameter space,
are not met. Codon models fit x distributions that, for some
data-generating settings, violate regularity conditions, which
leads to substantial instability in parameter estimation. These
instabilities have a negative impact on the inference of positive
selection under EB, and we show that our new approach is an
improvement over both NEB and BEB in such cases. We also
show that results previously reported for the tax gene of HTLV
(Suzuki and Nei 2004) are likely a consequence of such insta-
bilities. The tax gene is a well known example where EB is
widely considered unreliable, and it has been used to criticize
the overall approach. We provide an explanation for the pre-
vious results obtained under EB methods for the tax gene, and
show that SBA can help diagnose such dubious inferences.

New Approaches
We developed a new approach for classifying sites we call
smoothed bootstrap aggregation (SBA), which uses boot-
strapping and kernel smoothing techniques to accommodate
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uncertainties in MLEs. Site patterns from a sequence align-
ment are sampled with replacement to create a number of
bootstrap sequence alignments. For each of the bootstrap
sequence alignments, MLEs are calculated. The usual boot-
strap distribution is the empirical distribution of the calcu-
lated MLEs. To avoid difficulties due to (1) low information
content in the data, (2) necessarily limited bootstrap sam-
pling, and (3) instabilities in the parameter estimates, we used,
instead, a kernel density estimate of the bootstrap distribu-
tion coming from the MLEs. The smoothness of the distribu-
tion is controlled by a bandwidth parameter, which we set
larger than conventional values to give greater smoothing.

While typical applications of bootstrapping use MLEs to
calculate confidence intervals and standard errors, we, in-
stead, use the bootstrap to accommodate uncertainty in
the posterior probabilities of positive selection at sites. For
any given site in the original sequence alignment, many pa-
rameter values are generated from the smoothed bootstrap
distribution and substituted into posterior probability formu-
las to give a distribution of posterior probabilities which re-
flects parameter uncertainty. The mean or median of these
posteriors is a more stable estimate of the true posterior and
is used for classification. See figure 1 for an overview of SBA.

Results

Non-Standard ML Estimation Behavior
Parameter estimation by ML has attractive statistical proper-
ties, including consistency, efficiency, and asymptotic normal-
ity, when certain regularity conditions hold (Kalbfleisch 1985;
Bickel and Doksum 2006). For settings where regularity con-
ditions hold, we verified that we could obtain well-behaved
estimates of the parameters of the x distribution under two
commonly used codon models: M2a (Nielsen and Yang 1998;
Yang et al. 2005) and M8 (Yang et al. 2000a). We simulated
100 datasets representing a regular estimation problem with
an x distribution having at least 10% weight on each site class

(45% x ¼ 0, 45% x ¼ 0:5, and 10% x ¼ 5). As expected,
MLEs obtained from these data under both M2a and M8 have
unimodal and symmetric distributions (fig. 2a and b). For the
estimates in this regular case, there are no indications of de-
partures from the limiting properties predicted by ML theory.

The regularity condition requiring true parameter values to
be in the interior of the parameter space is sometimes vio-
lated when using codon models. For such parameter settings,
instabilities or departures from the expected limiting proper-
ties of ML estimation can arise including non-Gaussian and
over-dispersed distributions of estimates. To investigate insta-
bilities under models M2a and M8, we simulated 100 datasets
representing an irregular estimation problem with sparse in-
formation, i.e., 100% of the sites at the threshold for positive
selection, x¼ 1. In figure 2e and f, in contrast to the results
presented in figure 2a and b, there are instabilities in the MLEs
for the parameters representing the proportion of sites under
positive selection, px>1. The px>1 parameter distributions
under both models have mass concentrated on both the
lower and upper boundaries of the parameter space, and
the distributions of the corresponding x>1 parameters are
concentrated on the lower boundary. Application of the LR
test to filter datasets that convey no evidence of positive
selection did not prevent instabilities. The null hypothesis
of no positive selection was rejected for 10 datasets under
M2a and 9 under M8. However, the MLE distributions after
applying this pre-screening step remained unstable (supple
mentary fig. S1, Supplementary Material online).

Some of the model M2a MLE instabilities shown in figure
2e and f are due to the discrete x distribution. True discrete
distributions of interest can lie on the boundary of the pa-
rameter space, which is a regularity condition violation that
gives rise to MLE instabilities. For instance, consider data gen-
erated from an x distribution with no mass on x > 1.
Estimates of the x distribution will tend to approximate
the true distribution and one way this can occur under
M2a is when x̂>1 � 1. When this happens, the likelihood
will remain approximately constant over all choices of px¼1

and px>1, giving a sum, px>1 þ px¼1, that is approximately
the same as that of the MLE. Consequently, estimates of px¼1

þpx>1 are stable, but estimates of px¼1 and px>1 are not,
because many different choices give the same sum. Likewise,
when a px>1 parameter is estimated near 0, the correspond-
ing x>1 can take on almost any value without changing the
likelihood. For example, two M2a and six M8 biologically
unrealistic estimates of the x>1 parameter (e.g.,
x>1 ¼ 999) occurred when the corresponding px>1 param-
eters were estimated to be 0. These estimates were excluded
from the x>1 histograms. For the data representing an irreg-
ular estimation problem with all sites simulated with x ¼ 1,
two other problematic M2a parameterizations that fit the
data equally well occurred often. First, all the weight was
put on the x1 category and second, all the weight was put
on the x>1 category when it was estimated very close to 1.
Although there is virtually no difference in the likelihood
scores between the two parameterizations, the NEB posterior
probabilities for positive selection were 0 and 1 respectively.
These different MLE instabilities arose with two general types

x

x∗2 . . .x∗1 x∗B

q̂ ∗1 q̂ ∗2 . . . q̂ ∗B

Prh (w >1|x h , q̂∗1) Prh (w >1|x h , q̂∗2) . . . Prh (w > 1|x h , q̂ ∗B )

B
b=1 Pr h (w >1|x h , q̂∗b)/B

FIG. 1. Bootstrapping site patterns in a codon sequence alignment to
classify selection pressure at codon sites. From an alignment of pro-
tein coding DNA sequences, x, with n codon sites, site patterns are
randomly sampled with replacement to obtain a bootstrap sample,

x�b with n sites. MLEs, ĥ
�b

, are then estimated for bootstrap sample

x�b . Using ĥ
�b

and x, the posterior probability Prhðx > 1jxh; ĥ
�bÞ, that

site h is under positive selection is calculated. These steps are repeated
B times to calculate B sets of posterior probabilities. An aggregate
posterior probability that site h is under positive selection is calcu-
lated by, for instance, averaging posterior probabilities over bootstrap

replicates,
PB
b¼1

Prhðx > 1jxh; ĥ
�bÞ=B.
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of simulation settings: (1) when fewer site classes were simu-
lated than exist in the fitted model, and (2) when different site
classes were simulated with similar levels of selection pressure.

When working with real data, often only a single sample is
available and alternative techniques must be used to approx-
imate distributions of parameter estimates. One such tech-
nique is the bootstrap. We used our bootstrap-based
approach with sequence alignments to investigate properties
of the MLE distributions and to detect settings where inference
tends to be problematic (see “Methods” section). Whereas
sampling with replacement from a single sample leads to a
bootstrap parameter distribution that is a jagged estimate of
a smooth distribution, we found the bootstrap, in many cases,
can effectively estimate the distributions of MLEs. Figure 2c and
d shows the distribution of the x MLEs associated with positive
selection generated over 100 bootstrap samples of a regular
dataset. Note the resemblance of the bootstrap distributions in
figure 2c and d to the analogous distributions over simulated
datasets in figure 2a and b. A comparison of figure 2e, f and 2g, h
illustrates that when the distribution over multiple samples is
problematic, so too is the distribution over bootstrap samples.
Among the 100 bootstrap MLE distributions obtained from the
datasets simulated under irregular model conditions, we iden-
tified 91 of the M2a and 95 of the M8 px>1 parameter distri-
butions as unstable using the criterion that at least 5% mass lies
both below 0.2 and above 0.8. These distributions indicate that
the mixture distribution for x “flip-flops” between few and
many sites in a positive selection class. Recall that under the
generating model for these data, no sites are under positive
selection. Plots of the other parameters of the x distributions
can be found in supplementary figure S2, Supplementary

Material online. Scenarios when the bootstrap distribution is
not a good estimate of the true distribution of parameter es-
timates has been described in other settings (Efron and
Tibshirani 1994, p. 81). Therefore, while the bootstrap alone
can be helpful for identifying problems, it is not always a robust
solution for deriving a correction for parameter uncertainty.

Kernel Smoothing Improves the Bootstrap-Based
Method for Approximating MLE Distributions
To avoid results that are a consequence of randomness due to
bootstrapping, it is beneficial to choose the number of bootstrap
samples, B, large enough so that the finite-sample bootstrap
distribution approximates the infinite-sample bootstrap distribu-
tion well. However, when regularity conditions are violated there
is no guarantee that even the infinite-bootstrap distribution pro-
vides an adequate assessment of the variability of an MLE. We
tested this assertion under codon models where the distributions
of the px>1 parameters were unstable over simulated and boot-
strap datasets. For the data representing irregular model condi-
tions described above, we generated 10,000 bootstrap datasets
for each of the first 10 simulated datasets. The instabilities that
characterize these 10 bootstrap distributions were largely
unchanged by increasing B (supplementary fig. S3,
Supplementary Material online). Similar difficulties arise in a va-
riety of bootstrap applications. As a simple example of the phe-
nomenon, suppose interest is in h from a binomial distribution
with small n and small h. It is possible to sample almost all zeros,
in which case the variance of the bootstrap distribution of h
estimates will be too small. Such boundary issues related to small
samples can similarly be problematic for x distributions when
estimated weights are close to 0.

(a) (b) (c) (d)

(e) (f) (g) (h)

FIG. 2. MLE distributions of the px>1 and x>1 parameters under M2a and M8. Histograms are over 100 simulated (a,b,e,f) and bootstrap (c,d,g,h)
datasets with the bootstrap datasets generated by sampling from one simulated dataset. Data were simulated under regular (a–d) and irregular (e–
h) conditions. Regular simulation conditions: 5 taxa, 45% x¼ 0, 45% x ¼ 0:5, and 10% x¼ 5. Irregular simulation conditions: 5 taxa, 100% x¼ 1.
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We used kernel smoothing along with bootstrapping to
characterize the uncertainty in MLEs under difficult estima-
tion conditions. Kernel smoothing is typically used to approx-
imate the infinite-sample distribution more effectively when
using a smaller number of bootstrap samples. However, the
standard application of this technique (Davison and Hinkley
1997, p. 79) was not sufficient when the MLEs were unstable.
For such cases, over smoothing (i.e., using a larger than typi-
cally considered optimal bandwidth) was necessary to obtain
conservative estimates of the MLE distributions, with larger
variance that suppressed the influence of the instabilities (sup
plementary fig. S4, Supplementary Material online). By over-
smoothing the p parameters of codon models M2a and M8
with a uniform kernel we compensated for (1) low informa-
tion content in the data, (2) fewer bootstrap samples, and (3)
instabilities in the parameter estimates. For this reason, we
included over-smoothing of the p parameters in all applica-
tions of SBA.

Simulation Results
We used simulation to compare the performance of SBA with
BEB and NEB. The design of our studies was motivated by the
more challenging schemes of Wong et al. (2004) and Yang
et al. (2005), however our design extends theirs to investigate
performance under progressively more model misspecifica-
tion. The design is divided into three scenarios covering three
levels of model misspecification. The Correct Model Scenario is
comprised of four simulation studies (studies 1–4) where the
nuisance parameters of the generating model (j¼ 1,
pi ¼ 1=61) were freely estimated by the fitted model. The
x distributions used to generate the datasets are listed in the
third column of table 1. This scenario design matches selected
schemes in Yang et al. (2005). The Mild Misspecification
Scenario uses the same x distribution as the first scenario
as the basis of four additional studies (studies 5–8), but in-
cludes mild misspecification of the nuisance parameters (see
Methods). Lastly, the Heavy Misspecification Scenario, includes
two studies (studies 9–10) with heavy misspecification for the
fitted model, which represents a more plausible scenario for
the analysis of real sequences. In one study (study 9), the data
were simulated using the highly biased codon frequencies
from the Drosophila GstD1 gene (Bielawski and Yang 2005).
In the second study (study 10), the generating model is based
on a 50/50 mixture of two heterogeneous classes of sites. One
class was generated using equal codon frequencies, j ¼ 1,
and x ¼ 0:5, while the other used the Drosophila GstD1
gene codon frequencies, j ¼ 8, and x ¼ 1. For all ten sim-
ulation studies, we simulated 100 alignments, each having 500
codons, using the same 5-taxon tree from Wong et al. (2004).
The studies in the Correct Model Scenario were repeated un-
der model M2a with the 30-taxon tree from the same paper.

Table 1 lists the false positive rates (proportion of sites
inferred positively selected among those that are not) using
a posterior probability cutoff of 0.95 for NEB, BEB, and SBA
under models M2A and M8. Study 1 (no misspecification of
the nuisance parameters and all sites simulated using x ¼ 1)
is an interesting case as NEB exhibits false positives, while BEB
and SBA do not. This is expected; NEB is known to yield

unreliable posterior probability calculations in small datasets
(Anisimova et al. 2002; Yang et al. 2005). Because the condi-
tions of study 1 yield unstable parameter estimates (fig. 2e–h),
the false positives under NEB reflect more than mere sam-
pling errors. MLE instabilities cause large px>1 to occur too
often and these values lead to high posterior probabilities for
positive selection under M2a and M8. The posterior proba-
bility calculations under SBA and BEB are reliable because
those approaches do not assume the MLEs have been esti-
mated without error. Yang et al. (2005) suggests that with
more data, the problems with NEB controlling false positives
can be mitigated. However, the MLE instabilities persisted in
study 1 using a tree topology with 30 taxa (supplementary fig.
S5, Supplementary Material online), indicating that large sam-
ple sizes do not always ensure accurate predictions.

Relative to simulations with a single x ¼ 1 (study 1), when
the x distribution was 50% x ¼ 0:5 and 50% x ¼ 1 (study
2), the overall signal for positive selection was diminished and
all false positive rates were 0. Conversely, when the x distri-
bution was 50% x ¼ 1 and 50% x ¼ 1:5 (study 3) there was
a slight increase in the NEB false positive rates relative to study
1. Under M2a the false positive rates were 0 using BEB and
SBA, but under M8 they increased to 0.05 using BEB and to
0.02 using SBA. For study 4, because the simulated x values
for the three sites classes were far enough apart, the false
positive rates were well controlled.

The introduction of mild model misspecification of the
nuisance parameters did not result in higher false positive
rates under M2a, but did under M8. For studies 5–8, the
BEB false positive rates (using a 0.95 posterior probability
threshold) under M8 increased in all four cases relative to
the corresponding studies (1–4) in the Correct Model
Scenario. The same SBA false positive rates only increased
in two cases and by smaller amounts than with BEB. When
heavy model misspecification was introduced in the third
scenario, NEB failed to adequately control false positives
with rates between 50% and 71% under both M2a and M8.
BEB and SBA also did not control the false positive rates in
study 9, but did in study 10.

The results in table 1 are over all sites in all simulated
datasets. After applying LR tests at the 0.05 level to filter
datasets that convey no evidence of positive selection, none
of the false positive rates under BEB or SBA changed.
Supplementary table S1, Supplementary Material online gives
the false positive rates under NEB after the adjustment. With
the exception of two cases, the effect is minimal. Interestingly,
under the null hypothesis, the false positive rates of the LR
tests were larger than expected, particularly with model
misspecification.

When testing for positive selection, we aim for large true
positive rates, the proportion of sites truly under positive
selection that are correctly identified, sometimes referred to
as power. A difficulty in comparing methods for detecting
positive selection is the choice of threshold. Lower thresholds
tend to increase the true positive rate, but tend to also in-
crease the false positive rate. To ensure that comparisons of
power for different methods correspond to the same false
positive rate we used Receiver Operator Characteristic (ROC)
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curves, a convenient way to visualize the balance between
accuracy and power for classification problems. Each point on
a curve represents a threshold for the posterior probability of
positive selection. Figure 3 shows ROC curves for each of the
simulations that included positive selection in the generating
model (studies 3, 4, 7, and 8). Curves are also included for the
classification of sites using the generating parameters, i.e., the
MLEs are fixed to the simulated values. These curves represent
an expected upper limit in performance of site classification
(supplementary file S1, Supplementary Material online). The
lower limit for classification, when each site is randomly iden-
tified to be under positive selection, is represented by a y¼ x
line.

The introduction of mild misspecification made the task of
detecting sites under positive selection more difficult in study
8. This is evident from the shifting of the ROC curves down
and to the right (lower rates of true positives for a given false
positive rate) in study 8 relative to the corresponding simu-
lations without the misspecification of the nuisance param-
eters in study 4. The same effect was not observed between
the ROC curves of studies 3 and 7.

In all cases, the SBA curves were at least as close as the
BEB curves to the expected upper limit. In studies 3 and 7
(50% x ¼ 1, 50% x ¼ 1:5), under M2a, where the estimates
of the px>1 and x>1 parameters were unstable (supplemen
tary fig. S6, Supplementary Material online), the gaps between

Table 1. Simulation Design and False Positive Rates under NEB, BEB, and SBA each with Models M2a and M8.

Study Misspecification x distribution NEB BEB SBA

M2a M8 M2a M8 M2a M8

1 None 100% 1 0.34 0.35 0.00 0.00 0.00 0.00
2 None 50% 0.5, 50% 1 0.00 0.00 0.00 0.00 0.00 0.00
3 None 50% 1 50% 1.5 0.35 0.37 0.00 0.05 0.00 0.02
4 None 45% 0, 45% 1, 10% 5 0.00 0.00 0.00 0.01 0.00 0.00
5 Mild 100% 1 0.20 0.37 0.00 0.24 0.00 0.13
6 Mild 50% 0.5, 50% 1 0.00 0.13 0.00 0.11 0.00 0.02
7 Mild 50% 1, 50% 1.5 0.30 0.30 0.00 0.39 0.00 0.12
8 Mild 45% 0, 45% 1, 10% 5 0.00 0.04 0.00 0.12 0.00 0.00
9 Heavy 100% 1 0.71 0.71 0.55 0.62 0.13 0.52
10 Heavy 50% 0.5, 50% 1 0.53 0.50 0.00 0.00 0.00 0.01

NOTE.—A posterior probability threshold of 0.95 was used for classifying sites to be under positive selection. Under SBA, smoothing was carried out using a uniform kernel with a
bandwidth parameter h¼ 0.4. False positive rates 0.05 and larger are shown in italics.

FIG. 3. ROC curves for the detection of sites under positive selection for BEB, NEB, and SBA analyses of data generated under two different
simulation scenarios: without model misspecification (Correct Model, studies 3 and 4) and with mild model misspecification (Mild Misspecification,
studies 7 and 8). The data were simulated using a 5-taxon tree topology. In studies 3 and 7, 50% of the sites were simulated under neutral evolution
(x ¼ 1) and 50% of the sites under positive selection (x ¼ 1:5). In studies 4 and 8, 45% of the sites were simulated under purifying selection (x
¼ 0), 45% under neutral evolution (x ¼ 1) and 10% under positive selection (x ¼ 5). Each plot includes a line for the lower bound (y¼ x) and an
expected upper bound (OPT) when classification is made using the generating model parameters. Curves for NEB do not always cover the whole
range of false positive rates, because NEB sometimes estimates the x distribution with all mass on x > 1. In these cases, even with a posterior
probability cut-off of 1, NEB still incorrectly classifies sites to be under positive selection.
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the curves for BEB and SBA were the largest, even when the
number of taxa was increased from 5 to 30 (fig. 4). This indi-
cates that SBA, for a given false positive rate, had more power
to detect sites under positive selection than BEB. In studies 4
and 8 (45% x ¼ 0, 45% x ¼ 1, 10% x ¼ 5), where the
parameters of the x distribution were well estimated, all
approaches (NEB, BEB, and SBA) performed well and the
ROC curves were all close to the expected upper limit.
Taken together, the results suggest that SBA balances accu-
racy and power at least as well as BEB and may be preferable
to BEB when parameter estimates are unstable.

Real Data Analysis
We began our analysis of the 16 real datasets (described in the
“Methods” section and summarized in table 2) using the
bootstrap distributions of the MLEs to investigate their prop-
erties. We examined the unsmoothed distributions of the
parameters of the x distribution. These distributions indicate
that the MLEs for a given model can have very different
properties in different real datasets (supplementary figs. S8–
S11 , Supplementary Material online). Although the real data
represent different degrees of regular and irregular model
properties, we were able to identify groups of genes that
represent both extremes. The regular cases had no clear ev-
idence of MLE instabilities and low bootstrap variance (e.g.,
lysin; fig. 5a and b). We determined that the x distributions
had been well estimated for six genes (pol, vif, lysin, nuoL3,

RafL, and TrbL-VirB6_3). In contrast, we uncovered evidence
of MLE instabilities in other genes (e.g., CDH3; fig. 5c and d).
We determined that the x distributions had been poorly
estimated for five genes (CDH3, mivN, pgpA, tax, and TrbL-
VirB6_2) under at least one model. Because no single sum-
mary statistic (number of taxa, sequence length, tree length)
was generally predictive of irregular model properties, we
recommend visual inspection of the bootstrap distributions
for all real data analyses (supplementary figs. S10 and S11,
Supplementary Material online).

Next we investigated the degree to which the real data
results obtained under BEB, NEB, and SBA were consistent
with each other. This is challenging, because the posterior
probability thresholds for site classification are not calibrated
to give comparable false positive rates. Our solution was to
measure the rank correlations of the site-specific posterior
probability scores for positive selection between methods
(BEB, NEB, and SBA). As there are a large number of pairwise
comparisons, we took the mean relationship between meth-
ods for both the genes representing regular and irregular
model estimation (table 3). We found that when MLEs are
well estimated (regular genes), there is stronger agreement
among all three methods in the ranking of sites according to
the signal for positive selection. In contrast, when the x dis-
tributions are poorly estimated (genes representing irregular
estimation), BEB and SBA are generally consistent in their
rankings, but differ from NEB. These results suggest that
NEB’s inability to accommodate MLE uncertainty in such
datasets has the largest effect on the posteriors. However,
the problem of calibration remains. Our simulation studies
revealed that using a common posterior probability threshold
for classification does not guarantee a similar trade-off be-
tween accuracy and power for different methods. Indeed, we
see evidence of this in the real data. Comparing the counts of
positively selected sites identified in the genes using thresh-
olds of 0.50 and 0.95 reveals differences between BEB and SBA
(table 4), despite large rank correlations. Under M2a, there
was a stark difference between the irregular genes and all
other genes. ROC curves for simulations studies are better
suited for comparing methods, because they give direct com-
parisons of power at the same false positive rate. We also used
rank correlation to investigate the robustness of the methods
(BEB, NEB, and SBA) to the chosen model (M2a versus M8).
We did this by computing the rank correlation, between
models, of the site posterior probabilities obtained by the
same method (table 5). For the regular genes, all three meth-
ods had high correlations with low variably. For the genes
representing irregular estimation, the correlation was lower
and the variability larger for NEB as compared with BEB and
SBA. The similarity across models that we observed for SBA
may be a consequence of using nonparametric bootstrap-
ping, which should show robustness to model misspecifica-
tion. It seems that BEB’s application of uniform priors to the
x distribution achieved a similar effect.

Up to this point, bootstrapping has been used to obtain
surrogates for posteriors. An alternative use of bootstrapping
is to construct confidence intervals for posteriors to quantify
the uncertainty at any given site about what the true

FIG. 4. ROC curves for the detection of sites under positive selection
for BEB, NEB, and SBA analyses of data generated under Correct
Model, study 3 (50% x ¼ 1, 50% x ¼ 1:5). The data were simulated
using a 30-taxon tree topology. The plot includes a curve for the lower
bound (y¼ x) and an expected upper bound (OPT) when classifica-
tion is made using the generating model parameters. The curves for
NEB do not always cover the whole range of false positive rates, be-
cause NEB sometimes estimates the x distribution with all mass on
x > 1. In these cases, even with a posterior probability cut-off of 1,
NEB still incorrectly classifies sites to be under positive selection.
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posterior of positive selection is. For the real data, these con-
fidence intervals differed substantially between M2a and M8,
highlighting differences between the two modeling frame-
works. For sites having a posterior of at least 0.9 under one
or more methods, the M8 confidence intervals for those sites
were never wider than the corresponding M2a intervals (table
6). This result reflects broad differences between the MLE

distributions obtained under these two models; MLE distri-
butions under M8 tend to be tighter, and more likely located
away from a boundary (supplementary figs. S10 and S11,
Supplementary Material online). We believe this represents
empirical support for the commonly held notion that M8 is
more powerful than M2a (Wong et al. 2004). However, this
relationship should not be assumed to hold when the MLEs
are poorly estimated. Confidence interval widths were at the
maximum (1.0) for both M8 and M2a in three of the five
genes representing irregular estimation. These findings high-
light the importance of (1) inspecting bootstrap distributions
to gain insights into the challenges posed by the data in hand,
and (2) using SBA to accommodate MLE uncertainties (es-
pecially when they are poorly estimated).

Lastly, we interpret our results for the tax gene of the
human T-cell lymphotropic virus. This gene warrants special
attention because it has a highly unusual site-pattern distri-
bution, extreme MLEs, and has been employed as a boundary
case in several studies of the NEB and BEB classifiers (Suzuki
and Nei 2004; Yang et al. 2005). The dataset has 20 taxa and
181 sites, 158 (87%) of which are invariant across all 20 line-
ages. At each of the 23 variable sites, there is just one codon
that differs from all the others with 21 of the 23 codon

(a) (b) (c) (d)

FIG. 5. MLE distributions over bootstrap datasets for the lysin and CDH3 genes. The distributions of the px>1 and x>1 parameters associated with
positive selection were estimated under models M2a and M8 for each of 100 bootstrap datasets.

Table 2. Genes Analyzed under Models M2a and M8 Using NEB, BEB, and SBA Approaches for Site Classification.

�lnL

Gene Nt Nc M1a/M2a M7/M8 P-value TTL Ns

b-globin 17 144 3716.14/3712.55 3697.22/3686.13 0.0275/1.53e�5 8.40/8.57 0(0)/3(4)
ccmF 5 635 6121.78/6113.57 6127.62/6116.48 2.72e�4/1.46e�5 5.60/3.03 3(2)/3(5)
CDH3 11 828 5629.97/5623.37 5630.66/5623.88 1.35e�3/1.14e�3 0.56/0.56 1(1)/1(1)
ENAM 11 1142 7514.30/7509.28 7609.16/7605.74 6.61e�3/0.0327 0.46/0.56 1(1)/2(1)
env 13 91 1114.64/1106.45 1115.40/1106.39 2.76e�4/1.23e�4 2.04/2.04 2(2)/2(4)
lysin 25 134 4472.65/4410.28 4472.16/4410.57 2.86e�14/0.00 8.81/8.82 22(22)/23(23)
mivN 5 504 3383.45/3832.93 3834.69/3831.44 0.595/0.0388 1.62/1.60 0(0)/1(1)
nuoL3 5 499 5006.16/4978.97 5011.37/4977.19 1.56e�12/1.44e�15 4.58/4.49 9(8)/10(10)
perM 5 351 2619.88/2619.43 2621.64/2617.94 0.638/0.0247 1.78/1.80 0(0)/2(0)
pgpA 5 198 1541.27/1539.29 1542.65/1538.91 0.138/0.0238 2.93/2.23 1(0)/1(1)
pol 23 947 9394.05/9363.96 9405.74/9365.88 8.52e�14/0.00 1.31/1.30 6(6)/10(13)
RfaL 5 403 3964.89/3955.34 3970.38/3955.44 7.16e�05/3.23e�7 3.46/3.46 2(1)/4(3)
tax 20 181 895.50/892.02 895.50/892.02 0.0309/0.0309 0.13/0.13 181(0)/181(21)
TrbL-VirB6_2 5 657 5492.55/5492.52 5301.23/5286.43 0.976/3.74e�7 2.12/2.10 0(0)/1(0)
TrbL-VirB6_3 5 938 8305.65/8288.36 8307.06/8269.09 3.09e�8/0.00 3.06/3.02 3(2)/18(11)
vif 29 192 3393.83/3367.86 3400.45/3370.66 2.29e�06/1.16e�13 2.90/2.91 10(8)/10(10)

NOTE.—Nt: number of taxa, Nc: sequence length in number of codons,�lnL:�log likelihood for each nested model pair, p-value of the likelihood ratio test for the presence of
positive selection, TTL: total tree length estimated under M2a/M8, Ns: number of sites classified to under positive selection using a posterior probability threshold of 0.95 under
M2a/M8 for NEB(BEB).

Table 3. Spearman Rank Correlations between Site Posterior
Probabilities for Each Method of Classification.

Regular Irregular

Mean SD Mean SD

M2a
NEB/BEB 0.98 0.04 0.65 0.17
NEB/SBA 0.94 0.09 0.66 0.17
BEB/SBA 0.96 0.05 0.98 0.02
M8
NEB/BEB 0.99 0.01 0.84 0.30
NEB/SBA 0.96 0.04 0.81 0.27
BEB/SBA 0.98 0.03 0.98 0.02

NOTE.—The mean and standard deviation (SD) of the correlations are for real genes
displaying regular and irregular estimation properties.
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changes coding for a different amino acid. This atypical site-
pattern distribution corresponds to a relatively large number
of nonsynonymous substitutions over very short branch

lengths (mean branch length: 0.0064 under both M2a and
M8). A very high probability of positive selection (i.e., large
values for both the px>1 and x>1 parameters) is required to
account for the nonsynonymous substitutions when the
branch lengths are so short. In fact, both models M2a and
M8 estimate 100% of the sites to be in the x > 1 class. This
result belies that fact that considerable instability is associated
with those parameter estimates, as revealed by bootstrapping
(supplementary figs. S10 and S11, Supplementary Material
online). Since NEB ignores parameter value uncertainty, it
must assign a conditional posterior probability of x > 1
(Pr) equal to 1.0 for all sites, including those that are invariant.
In contrast, the site posteriors for BEB and SBA were similar
and depended on the site patterns (supplementary table S2,
Supplementary Material online). As expected, the SBA signal
for positive selection was strongest at the 21 sites with non-
synonymous changes (M2a: 0:87 < Pr < 0:89; M8:
0:99 < Pr < 0:99), as compared with all other sites
(M2a: 0:55 < Pr < 0:60; M8: 0:76 < Pr < 0:80). The
SBA confidence intervals under M8 revealed that the esti-
mates of Pr for the 21 sites with a nonsynonymous change
were more reliable (average width: 0.028) than for the invari-
ant sites (average width: 0.418). We suggest this result is ap-
propriate for these data. Almost all the signal in this dataset is
contained in those 21 sites, and it is difficult to reconcile this
amount of nonsynonymous change over such short branches
without strong positive selection. Moreover, when branch
lengths are very short, an invariant site can only be viewed
as carrying no signal about whether the x value would be
small or large over longer evolutionary periods. This leads to
very wide 95% SBA Pr confidence intervals for these sites.

Discussion
We have presented an approach, based on an unconven-
tional use of the nonparametric bootstrap, for evaluating
MLE instabilities and improving site-specific inference of pos-
itive selection. For any given site in an alignment, conclusions
about positive selection are based on the aggregation and
distributions of many estimates of x and many posterior
probabilities. An important step in our approach involves
smoothing the bootstrap distributions of the parameter esti-
mates using techniques borrowed from kernel density esti-
mation. This step is critical for overcoming instabilities in
parameter estimation. Kernel smoothing also has the benefit
of reducing computational costs relative to procedures that
use full bootstrap sampling to obtain comparable numbers of
MLEs.

Application of BEB, NEB, and SBA using models M2a and
M8 to 100 simulated datasets in each of 10 different simula-
tion scenarios showed that, under difficult simulation condi-
tions when regularity conditions have not been met, NEB
often poorly controls false positive classification of sites,
even when the number of taxa is large. This is in contrast
to past recommendations, which suggested NEB does well at
controlling false positive rates when analyzing datasets with
many taxa and long sequences (Yang et al. 2005). By account-
ing for variability of estimation, both BEB and SBA achieve

Table 4. Number of Sites Identified to be under Positive Selection for
the Real Data.

M2a M8

Gene NEB BEB SBA NEB BEB SBA

CDH3 1/1 12/1 46/0 1/1 22/1 117/5
mivN 1/0 7/0 1/0 4/1 12/1 28/0
pgpA 1/0 4/0 4/0 5/1 5/1 17/0
tax 181/181 181/0 181/0 181/181 181/21 181/21
TrbL-VirB6_2 0/0 16/0 0/0 11/1 18/0 59/0

pol 12/6 19/6 94/4 22/10 33/13 83/16
lysin 33/22 32/22 42/5 37/23 37/23 41/11
nuoL3 18/9 18/8 85/18 19/10 20/10 83/20
RfaL 20/2 20/1 70/1 33/4 41/3 74/3
TrbL-VirB6_3 28/3 27/2 73/9 45/18 44/11 134/48
vif 13/10 13/8 31/6 15/10 19/10 37/10

b-globin 4/0 5/0 11/0 8/4 8/4 17/4
ccmF 7/1 11/1 112/0 15/3 79/5 114/5
ENAM 9/1 21/1 184/0 44/2 31/1 78/1
env 14/3 16/3 21/3 16/3 22/5 24/3
perM 4/0 6/0 0/0 6/2 6/0 36/3

NOTE.—The posterior probability thresholds are 0.5/0.95. The top genes represent
irregular estimation, the middle regular, and the bottom genes are not categorized.

Table 5. Spearman Rank Correlations between Site Posterior
Probabilities for Models M2a and M8.

Regular Irregular

Mean SD Mean SD

NEB 0.98 0.04 0.81 0.13
BEB 0.99 0.01 1.00 0.01
SBA 1.00 0.00 0.99 0.00

NOTE.—The mean and standard deviation (SD) of the correlations are for real genes
displaying regular and irregular estimation properties.

Table 6. Average SBA Posterior Probability Interval Widths for Sites
with at Least One Method Having a Posterior Probability over 0.9.

Gene M2a M8 Difference

CDH3 0.95 0.46 0.49
mivN 1.00 1.00 0.00
pgpA 1.00 1.00 0.00
tax 0.87 0.31 0.56
TrbL-VirB6_2 1.00 1.00 0.00

pol 0.78 0.78 0.00
lysin 0.70 0.49 0.20
nuoL3 0.26 0.21 0.05
RfaL 0.68 0.48 0.19
TrbL-VirB6_3 0.66 0.10 0.57
vif 0.36 0.14 0.21

b-globin 1.00 0.00 1.00
ccmF 1.00 0.49 0.51
ENAM 0.53 0.43 0.10
env 0.51 0.27 0.24
perM 0.91 0.14 0.77

NOTE.—The top genes represent irregular estimation properties, the middle regular,
and the bottom genes are not categorized.

Mingrone et al. . doi:10.1093/molbev/msw160 MBE

2984

D
ow

nloaded from
 https://academ

ic.oup.com
/m

be/article-abstract/33/11/2976/2271860 by guest on 12 O
ctober 2019

http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/msw160/-/DC1
http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/msw160/-/DC1
http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/msw160/-/DC1
http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/msw160/-/DC1
Deleted Text: to
Deleted Text: e.g., 


better control of the false positive rates. However, SBA pro-
vided consistently better control under M8 when there was
mild model misspecification (studies 5–8 under in table 1),
and this was unaffected by pre-screening via the LR test. We
note that all real data are expected to be affected, to some
degree, by model misspecification.

By accounting for variability of estimation, both BEB and
SBA achieve good power relative to NEB. This is evident from
the ROC curves, where the curves for BEB and SBA tend to be
closer to the expected upper limit. Some of the simulation
results suggest that M2a is a better-performing model than
M8. For instance, M2a gave (1) ROC curves closer to the
expected upper bound in some cases (fig. 3) and (2) lower
false positive rates (table 1). This may, however, be a conse-
quence of the simulations conditions being more suitable for
M2a than M8. For example, in studies 3 and 7, half the sites
were simulated with x ¼ 1, and M2a has a site class with x
¼ 1 fixed, while M8 does not. On the other hand, considering
sites with larger posteriors in the real data analysis, the 95%
posterior confidence intervals were usually narrower (and
never wider) for M8 than M2a. This supports previous results
that suggest M8 has more power to detect sites under pos-
itive selection (Wong et al. 2004). The b-globin gene serves as
a good example. Of the five sites in this gene where either NEB
or BEB gave a posterior of at least 0.9, the SBA confidence
interval widths were all 1 for M2a, but averaged 0.129 for M8.
Moreover, the x>1 parameter distributions tended to be
wider for M2a than M8, particularly for the genes that dis-
played properties suggesting regularity conditions were met.
This is probably because the beta distribution used by M8 to
model x < 1 has more flexibility in real data conditions
compared with an M2a model with the same number of
parameters.

An appealing attribute of BEB, relative to SBA, is its limited
use of computational resources. Each SBA bootstrap analysis
may use similar computational resources as BEB does for the
one original dataset. However, SBA’s greater computational
requirements is a trade-off for a more rigorous assessment of
the parameter estimation. For example, SBA adjusts for the
uncertainty in all model parameters, including branch
lengths, while BEB does not. A new BEB implementation
that integrated over branch lengths would require costlier
techniques because numerical integration does not scale
well with higher dimension. Moreover, because SBA estimates
each set of bootstrap parameters independently, they can be
estimated in parallel. On a computing cluster with as many
cores as bootstrap samples generated, the wall-clock times for
BEB and SBA are comparable.

There are a limited number of BEB implementations for
different models. In contrast, it is comparatively trivial to
apply SBA to new models once the basic capacity for
bootstrapping and parameter smoothing are in place.
This could facilitate the application of SBA to a wider
variety of inference problems in molecular evolution
than has occurred with BEB. SBA for the popular
branch-site codon model A (Yang and Nielsen 2002;
Zhang et al. 2005) was implemented as a demonstration
of the feasibility of SBA implementations for new models.

A new, preliminary implementation, which was com-
pleted within a few hours, can be found at https://
github.com/Jehops/codeml_sba. An overview of the anal-
ysis of the NR1D1 gene (Baker et al. 2016) under SBA can
be found in the supplementary file S2, Supplementary
Material online.

There are useful by-products of the SBA approach for clas-
sifying sites. The histograms of the distributions of the MLEs
over bootstrap samples provide insight into the degree of
irregularity of the estimation. For several of the datasets,
most notably the tax gene dataset, these histograms provided
a clear indication that the MLEs were unstable. In such cases,
site classifications should be accepted with caution. Even
when regularity conditions have been met, the confidence
intervals of the posteriors provide an additional tool for as-
sessing the certainty about the strength of the signal for pos-
itive selection at an individual site. We suggest that future
analyses of real data should include both visual inspection of
bootstrap distributions and reporting of SBA-derived confi-
dence intervals of the posterior probabilities associated with
positive selection.

Bootstrapping has been shown to provide effective adjust-
ments to EB methods in other settings. For example, Laird
and Louis (1987) studied the application of bootstrapping
with EB methods for random effects models where both
the observations and random effects distributions were
Gaussian. They argued that confidence intervals produced
from bootstrap posteriors were frequently narrower than
they should be and that bootstrap averaging helped to ame-
liorate problems. They speculated that bootstrapping would
produce good EB inferences for a broad class of EB problems.
In a prediction setting, a procedure that aggregates predictors
generated from bootstrap replicates was proposed by
Breiman (1996), which was shown to move some unstable
predictors closer to optimality. The bagging procedure used
in that paper is equivalent to using the median posterior to
classify sites under SBA. Our experiments (data not shown)
indicated that the average is a better measure of the middle of
the distribution of site posterior probabilities.

While using the data in hand to account for errors in MLE
estimation is helpful for detecting sites under positive selec-
tion, refinements of the SBA approach are warranted. Like
other approaches, we have avoided the difficult process of
calibrating for type I errors in real data. Choosing an optimal
bandwidth parameter for smoothing a distribution is also a
difficult process. Under-smoothing will leave spurious bumps
and irregularities in the distribution and over smoothing will
remove useful information and increase bias. There are dif-
ferent theoretical suggestions for the size of the bandwidth
parameter, but these can be challenging to apply as they may
depend on the unknown density (Venables and Ripley 2013,
p. 176). SBA uses bootstrap distributions to highlight prob-
lems when MLEs fall on or close to their boundaries. We are
hopeful that a penalized likelihood approach, which can push
such estimates to the interior of the parameter space, will be
helpful. Bootstrapping does well to accommodate the vari-
ance in a parameter estimate, however, when estimates are
very small, the variance, even under bootstrapping, may be
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underestimated. This may be a problem we encountered with
the branch lengths of the tax gene. Some preliminary exper-
iments show that perturbing the very small branch length
estimates of the tax gene can cause large differences in the
MLEs of the parameters of the x distribution. This suggests
that applying kernel smoothing to parameters other than
those defining the x distribution may be helpful.

SBA can be applied to a wide variety of problems in mo-
lecular evolution where uncertainties or instabilities in MLEs
impact inference based on empirical Bayes. Examples where
the method can be directly applied, with little or no modifi-
cation, include: classification of sites into general rate catego-
ries (Mayrose et al. 2004), identification of positively selected
sites in non-coding DNA (Haygood et al. 2007), identification
codon sites subject to episodic change in selection pressure
(Yang and Nielsen 2002), detection of Type-I functional di-
vergence in protein sequences (Gaston et al. 2011), detection
of amino acid sites having shifts in the pattern of exchange-
abilities (Le et al. 2012), and detection of amino acid sites
evolving under a covarion-like evolutionary process (Penn
et al. 2008). With some modification, SBA could be applied
to the task of ancestral state reconstruction. As the field
moves towards increasingly more complex models, there
will be increasing demand for methods such as SBA that
can account for parameter-estimate uncertainties.

Theory and Methods

Markov Models of Codon Evolution
Consider an alignment of DNA sequences with n codon sites
and denote the codons in the sequences at site h ðh ¼ 1; . . . ;
nÞ as xh, the site pattern at site h. The models considered
here are described in (Nielsen and Yang 1998) and define
the relative, instantaneous substitution rate between co-
don i and j ði 6¼ jÞ at site h as

Qij /

0; if i and j differ at two or three codon positions;

pj; if i and j differ by a synonymous transversion;

jpj; if i and j differ by a synonymous transition;

xpj; if i and j differ by a nonsynonymous transversion;

xjpj; if i and j differ by a nonsynonymous transition

8>>>>>>>><
>>>>>>>>:

(1)

where Q is the rate matrix of a continuous-time, stationary,
time-reversible Markov process. The pj parameters above are
the stationary frequencies of codon j and the j parameter is
the transition to transversion rate ratio. The x parameter,
which has an interpretation as the nonsynonymous to syn-
onymous rate ratio, is the key parameter for the inference of
positively selected sites (Yang 2006, pp. 48–68). The transition
probability matrix, P(t), which gives the probabilities of state
changes over time, t, relates to the rate matrix, Q, by
PðtÞ ¼ eQt. For a phylogenetic tree with branch lengths, the
likelihood of the data at codon site h given the parameters h,
fðxhjhÞ, can be calculated using (1) and Felsenstein’s pruning
algorithm (Felsenstein 1973). Because sites are assumed to
evolve independently, the log likelihood for a sequence

alignment with more than one site pattern (n> 1) is the
sum of the site log likelihoods,
‘ ¼ log ðLÞ ¼

Pn
h¼1 log ffðxhjhÞg.

To account for variability in selection pressure across sites,
x is usually allowed to vary. The models we consider are a
subset of the models described in Yang et al. (2000a, 2000b),
which assume the value of x at site h comes from some
distribution. To avoid difficulties applying the pruning algo-
rithm, this distribution is always discrete with weights p1; . . . ;
pk on x1 . . . ;xk values. With k classes, each with an esti-
mate of the x ratio and corresponding weight, the likeli-
hood the data at site h then becomes fðxhjhÞ ¼Pk

i¼1 pifðxhjxi;wÞ, where w denotes the model parame-
ters other than those describing the x distribution.

Bayes formula is used to calculate a posterior probability
that a given site evolved under site class i with
PrðxðhÞ ¼ xijxh;wÞ ¼ pifðxhjxi;wÞ=

Pk
j¼1 pjfðxhjxj;wÞ.

The NEB approach fails to account for sampling errors in any
of the parameters estimated by ML. To accommodate the
uncertainties in the parameters of the x distribution, Yang
et al. (2005) used a hierarchical BEB approach by assigning
prior probabilities to these parameters.

Bootstrap Methods to Adjust for Uncertainty
To construct confidence intervals for a parameter, h, and
correct bias, Efron (1979) devised the bootstrap. A bootstrap
sample, x�, is obtained by drawing the values, x�1; . . . ; x�n;with
replacement from a random sample, x. For each of b ¼ 1 . . .
B bootstrap samples we calculate the bootstrap estimate, ĥ

�b
.

The distribution that assigns mass 1/B to each of the ĥ
�b

is the
bootstrap distribution of ĥ. Bootstrap distributions are com-
monly used with phylogenetic data to test the topology of a
proposed tree. We applied the bootstrap to site patterns in a
sequence alignment to adjust for the uncertainty in param-
eter estimates in EB classification. The procedure is illustrated
in figure 1:

(1) From an alignment of protein coding DNA sequences,
x, with n codon sites, randomly sample site patterns
with replacement to obtain a bootstrap sample, x�b,
with n sites.

(2) Estimate the MLEs, ĥ
�b

, for bootstrap sample x�b.

(3) Use ĥ
�b

and x to calculate posterior probabilities,

Prhðx > 1jxh; ĥ
�bÞ, that each site, h, is under positive

selection.
(4) Repeat steps 1 through 3 B times to calculate B sets of

posterior probabilities for each codon site.
(5) Calculate an aggregate posterior probability that each

site is under positive selection by, e.g., averaging pos-
terior probabilities over bootstrap replicates,
PB
b¼1

Prhðx > 1jxh; ĥ
�bÞ=B.

A preliminary implementation of the SBA method sup-
porting codon models M2a, M8, and branch-site model A,
built upon the codeml application from the PAML package
(Yang 2007), can be found at

https://github.com/Jehops/codeml_sba.

Mingrone et al. . doi:10.1093/molbev/msw160 MBE

2986

D
ow

nloaded from
 https://academ

ic.oup.com
/m

be/article-abstract/33/11/2976/2271860 by guest on 12 O
ctober 2019

Deleted Text: -
Deleted Text: -
https://github.com/Jehops/codeml_sba


Kernel Smoothing to Approximate the Bootstrap
Distribution
Kernel smoothing (Akaike 1954; Rosenblatt et al. 1956; Parzen
1962; Wand and Jones 1994) is class of nonparametric tech-
niques that can improve estimation of a distribution. The
kernel density estimator for a continuous density f,

f̂ðx; hÞ ¼ ðnhÞ�1
Xn

i¼1

Kð½x� Xi�=hÞ;

includes a kernel density (probability) function, K, to locally
average or smooth observations and the amount of smooth-
ing is controlled by a bandwidth parameter, h. For small h,
each of the h�1Kð½x� Xi�=hÞ contributions are large only for
x close to some Xi giving rise to a bumpy distribution, whereas
for h large the h�1Kð½x� Xi�=hÞ contributions overlap giving
a much smoother distribution (Silverman and Young, 1987).
We used kernel density estimation to create smoothed boot-
strap distributions for the p parameters of the x distributions
under models M2a and M8 using a uniform kernel.

Kernel density estimation requires a bandwidth parame-
ter as input. One method for determining h is using leave-
one-out cross validation,

f̂ ð�kÞðx; hÞ ¼ ðn� 1Þ�1h�1
X
i6¼k

Kð½x� Xi�=hÞ

(Venables and Ripley 2013, p. 184). In this approach, h is
chosen to maximize the sum of the logged density estimatesP

k log f̂ ð�kÞðxk; hÞ, where f̂ ð�kÞðx; hÞ is the kernel density
estimate constructed from all of the xi except xk. However,
our experiments using leave-one-out likelihood to choose an
optimal bandwidth parameter for the p parameters of M2a
and M8 merely resulted in smoothed estimates of the biased
bootstrap distributions. To obtain conservative estimates of
the p parameters that suppressed the influence of instabilities
we chose to over smooth by using a bandwidth parameter of
h¼ 0.4 for all applications of SBA.

Adding kernel smoothing to the bootstrap algorithm in-
creases the number of parameter estimates used in step 5 of
the unsmoothed algorithm by sampling from a smoothed
bootstrap distribution. The adjustment is in step 2 of the
algorithm. The ML parameters estimated from bootstrap sam-
ple b, ĥ

�b
, are replaced by hsb sampled from the smoothed

bootstrap distribution. The rest of the algorithm proceeds as
in the unsmoothed version, but using hsb in place of ĥ

�b
.

For model M8, the step 2 adjustment is as follows. For each
ĥ
�b
; psb

x< 1 samples are repeatedly drawn from a univariate uni-
form distribution centered at p̂�bx< 1 with width 2h. If necessary,
the minimum and maximum points of the distribution are trun-
cated to 0 and 1. Let hsb denote ĥ

�b
with psb

x< 1 replacing p̂�bx< 1
(psb

x>1 ¼ 1� psb
x< 1). The same procedure is used under model

M2a, however, with three weight parameters, the sampling
is done on a bivariate uniform distribution with the following
additional restrictions:
i) psb

x< 1 þ psb
x¼1 � 1,

ii) ðp̂�bx< 1 � hÞ � psb
x< 1 � ðp̂

�b
x< 1 þ hÞ, and

iii) ðp̂�bx¼1 � hÞ � psb
x¼1 � ðp̂

�b
x¼1 þ hÞ.

As with M8, if necessary, the minimum and maximum points of
the distribution are truncated at 0 and 1, and
psb

x>1 ¼ 1� psb
x< 1 � psb

x¼1.

Simulation Studies
Datasets were simulated using EvolverNSSites from the PAML
4.8a package (Yang 2007) and Indelible (Fletcher and Yang
2009) following some of the settings described in Wong et al.
(2004). To compare the relative performance of BEB, NEB, and
SBA for predicting sites under positive selection, ten different
simulation studies, divided into three scenarios, were used.
Table 1 gives an overview of the x distributions used to
simulate the data. The Correct Model Scenario included four
simulation studies where the nuisance parameters, j¼ 1 and
pi ¼ 1=61, matched the fitted model. The Mild
Misspecification and Heavy Misspecification scenarios included
four simulation studies with mild misspecification and two
studies with heavy misspecification of the fitted model, re-
spectively. The data in the Mild Misspecification Scenario was
simulated using j¼ 8 and empirical codon frequencies de-
rived from application of the general time-reversible
model (Yang 2006, p. 33) to the TrbL-VirB6-3 plasmid
conjugative transfer protein of Rickettsia. In the fitted
model, j was estimated, while the misspecification was
introduced by using F3�4 (expected codon frequencies
calculated using the nucleotide frequencies at the three
codon positions). For the Heavy Misspecification Scenario,
study 9 used the heavily biased codon frequencies from
the Drosophila GstD1 gene and j ¼ 8 to simulate the
data. In study 10, there were two heterogeneous classes
of sites. Half the sites were simulated using equal codon
frequencies, j ¼ 1, and x ¼ 0:5, while the other half with
the Drosophila GstD1 gene codon frequencies, j ¼ 8, and
x¼ 1. For both studies in this scenario, analysis was car-
ried out using a single set of codon frequencies (set equal
to 1/61) and a single j parameter estimated for all sites in
the data set. For all studies in the three scenarios, 100
alignments, each having 500 codons, were simulated
with the same 5-taxon tree from Wong et al. (2004).
The studies in the Correct Model Scenario were repeated
under model M2a with the 30-taxon tree from the same
paper.

Real Data Analysis
Table 2 describes the real data sequences we analyzed under
models M2a and M8 using NEB, BEB, and SBA. Of the 16
genes, eight code for transmembrane proteins in Rickettsia
(ccmF, mivN, perM, pgpA, RfaL, TrbL-VirB6_2, and TrbL-
VirB6_3) and were previously analyzed in Bao et al. (2008).
Three genes from the HIV-1 virus (env pol, and vif) and a b-
globin gene were described and analyzed in Yang et al.
(2000a), two primate genes (CDH3 encoding cadherin and
ENAM encoding enamelin), a lysin gene from Yang et al.
(2000b), and the tax gene from the human T-cell lymphotro-
phic virus (HTLV) that was analyzed by Suzuki and Nei (2004).
All data is available from https://github.com/Jehops/sba_
real_data.
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Supplementary Material
Supplementary figures S1–S11, tables S1–S2, and files S1–S2
are available at Molecular Biology and Evolution online (http://
www.mbe.oxfordjournals.org/).
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