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Abstract

When a substitution model is fitted to an alignment using maximum likelihood, its parameters are adjusted to account
for as much site-pattern variation as possible. A parameter might therefore absorb a substantial quantity of the total
variance in an alignment (or more formally, bring about a substantial reduction in the deviance of the fitted model) even
if the process it represents played no role in the generation of the data. When this occurs, we say that the parameter
estimate carries phenomenological load (PL). Large PL in a parameter estimate is a concern because it not only invalidates
its mechanistic interpretation (if it has one) but also increases the likelihood that it will be found to be statistically
significant. The problem of PL was not identified in the past because most off-the-shelf substitution models make
simplifying assumptions that preclude the generation of realistic levels of variation. In this study, we use the more
realistic mutation-selection framework as the basis of a generating model formulated to produce data that mimic an
alignment of mammalian mitochondrial DNA. We show that a parameter estimate can carry PL when 1) the substitution
model is underspecified and 2) the parameter represents a process that is confounded with other processes represented
in the data-generating model. We then provide a method that can be used to identify signal for the process that a given
parameter represents despite the existence of PL.
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reliability.

Introduction

There are in general two ways to quantitatively describe a
natural process. The phenomenological approach is to sum-
marize relationships between variables with little or no refer-
ence to causation. The alternative is to specify a model based
on known or hypothetical mechanistic links between varia-
bles that explain their relationships. For example, although
Newton'’s law of universal gravitation provides a highly accu-
rate description of the apparent force of attraction between
objects, it does so without explaining the cause. Newton’s law
is therefore phenomenological. Einstein, by contrast, de-
scribed gravitation mechanistically as the result of mass gen-
erating curvature in space-time. Biology is replete with
models of complex processes that cannot be placed into ei-
ther of these neat categories. On the one hand, there is a
natural desire to build mechanistic models that capture as
much of the complexity and richness of a process as possible.
On the other hand, limitations in information and computa-
tional resources often make simplifying assumptions un-
avoidable, thereby forcing a more phenomenological
approach. The result of this tension is that models of biolog-
ical processes often fall somewhere on a continuum between
phenomenological and mechanistic.

A key feature of a model characterized as mechanistic is
that its parameters are interpretatable with repsect to the real

data-generating process (Liberles et al. 2013). This underlines
the fact that the terms mechanistic and phenomenological
are more aptly applied to individual parameters. Indeed,
mechanistic and phenomenological parameters often appear
together in the same model (Rodrigue and Philippe 2010).
However, the distinction between the two is not always clear.
Codon substitution models (CSMs), for example, consist of
two submodels, one for the effect of selection at the amino
acid level (the selection submodel) and the other for DNA-
level substitution processes (the DNA submodel). The pro-
cesses described by these submodels, the appearance of a new
mutation in an individual and its eventual fixation or elimi-
nation in the population, are necessarily probabilistic (Moran
1958; Kimura 1962). In this context, we define a mechanistic
parameter as one meant to provide an explanation for differ-
ences in probability distributions rather than in specific out-
comes. For example, a probabilistic bias for or against
replacement substitutions is represented in the selection sub-
model by a nonsynonymous-to-synonymous rate ratio . An
estimate @ of this rate ratio has traditionally been used to
support one of three possible explanations: stringent selec-
tionby @ < 1; neutrality by & = 1; and positive selection by
@ > 1. However, o can only be estimated by combining the
information contained in a number of sites, at least when the
number of taxa is limited (but see Rodrigue et al. 2010;
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Tamuri et al. 2012, 2014; Rodrigue and Lartillot 2014;
Spielman and Wilke 2016). It follows that @ only provides a
summary of selection effects, which are typically heteroge-
nous across sites, and does not represent the effects at any
individual site. In this sense, we argue, the rate ratio is phe-
nomenological or at least closer to the phenomenological end
of the continuum. By contrast, it is generally assumed that the
mutation process is the same across sites and over time. An
estimate of the probabilistic bias in favor of mutations that
are transitions over mutations that are transversions, repre-
sented in by x in the DNA submodel, is therefore closer to the
mechanistic end of the continuum because its interpretation
applies equally to any specific site.

The distinction between mechanistic and phenomenolog-
ical is further obfuscated by the way parameters are esti-
mated. Under the maximum likelihood (ML) framework,
the likelihood of a set of model parameters, such as the
rate ratio & and the vector of branch lengths b, is expressed
in the form of a likelihood function L(w, b|X, T), where X
represents the alignment and T the assumed topology of the
tree. The maximum likelihood estimate (MLE) for (w, b) is
the vector (&, b) that maximizes the likelihood L(w, b|X, T)
of the data. A key feature of the ML framework is that the
likelihood of the data always increases when a new parameter
is added to the fitted model. For example, L(c, b, ¥/|X,T)
must theoretically be greater than L(®,b|X,T). The new
parameter V is said to have improved the fit of the model
in proportion to the size of the increase in likelihood it en-
gendered, and is said to be statistically significant if the in-
crease is larger than some prespecified threshold. Under this
framework, it is possible to find that i is statistically signifi-
cant even if the process it represents did not actually play a
role in the generation of the data.

All CSMs are misspecified, meaning that they do not
match the true generating process. For example, the selec-
tion submodel of the simplest M-series model MO (Yang
et al. 2000) characterizes the selection process with one
rate ratio for all sites and branches. It is underspecified be-
cause it does not account for any heterogeneity in the se-
lection process. In general, if the selection submodel of a
CSM fails to absorb a substantial proportion of the variation
in site patterns due to selection effects, some of this varia-
tion might be inappropriately absorbed by parameters of
the DNA submodel. This is especially likely to occur when
a parameter of the DNA submodel represents a process that
is counfounded with selection effects. We say that two pro-
cess are confounded if they can produce similar patterns or
“signatures” in the data. Under the true evolutionary pro-
cess, for example, the rate ratio at a site depends on the
codon occupying the site, with higher values corresponding
to codons that are less fit (Jones et al. 2017). Random
changes in rate ratio (a.k.a. heterotachy) can therefore arise
by episodic movement of the site away from and back to its
optimal amino acid, provided neither selection nor drift
dominates the site (e.g, by shifting balance, Jones et al.
2017). The process of shifting balance would be confounded
with any other process that produces similar variations in
rate ratio over time.
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To assess the impact of confounding on the MLE of a
model parameter, we introduce the concepts of percent re-
duction in deviance (PRD) and phenomenological load (PL).
Formally, deviance is the difference between the maximum
log-likelihood (LL) of a given CSM and the maximum log-
likelihood of the saturated model (Ms) when both are fitted
to the same alignment. The saturated model, analagous to a
regression model in which there are as many predictor vari-
ables as observations, will always provide the largest log-
likelihood of any CSM. The difference between this and the
log-likelihood of MO (i.e,, the simplest M-series CSM) provides
a baseline deviance score for comparison with differences
between other pairs of models. The deviance under a model
M can be reduced by the addition of a new parameter /. The
PRD of the MLE  is the decrease in deviance it engenders
normalized by the baseline score. A large PRD is generally
considered to indicate that the new parameter improved
model fit. However, better fit does not imply a better model.
If Y has a mechanistic interpretation, and if the process it
represents did not actually occur when the data were gener-
ated, we equate PRD to the PL carried by . A large PL is a
concern because it not only invalidates the mechanistic in-
terpretation of i but also increases the likelihood that y will
found to be statistically significant. Under this scenario, the
model M with i will provide a better fit, but would also lead
to false conclusions about the true data-generating process.

In this study, we test the hypothesis that, when the selec-
tion submodel of a CSM is both underspecified and con-
founded with processes specified by the DNA submodel, PL
can arise and lead to false biological conclusions. We chose to
focus on the fixation of simultaneous double and triple (DT)
mutations. The majority of CSMs assume that sites evolve by
a series of single nucleotide substitutions, despite evidence for
fixation of DT mutations (Whelan and Goldman 2004; Kosiol
et al. 2007; Tamuri et al. 2012). Several authors have argued
that it would be beneficial to add a few extra parameters to
the DNA submodel of any standard CSM to account for DT
mutations (Miyazawa 2011; Zaheri et al. 2014). To investigate
the utility of this recommendation, we added DT parameters
(o and f3, see Materials and Methods) to a variety of CSMs.
Our main study consists of an analysis of the propensity of
these models to detect the fixation of DT mutations in align-
ments generated with single nucleotide substitutions only.
Two smaller studies were also conducted, including an anal-
ysis of the impact of PL on a parameter intended to measure
changes in the intensity of selection (the RELAX model of
Wertheim et al. 2014), and an analysis of the impact of PL on
parameters intended to account for variations in the synon-
ymous substitution rate (dS) across sites (Kosakovsky Pond
and Muse 2005). We adduce the results of all three analyses as
evidence of the universal applicability of the PL concept.

Paper Outline

The CSMs used in this study included M0, M3(k =2), and
CLM3(k =2) (a covarion-like CSM described in Jones et al.
2017). These models are increasingly complex in their sub-
models for selection: MO models selection with a single rate
ratio o, M3 with two rate ratios @ and @, and a proportion
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po and CLM3 with two rate ratios w;, and ), a proportion
po and a switching rate 6. We extend these further by intro-
ducing a novel CSM called RaMoSS (for Random Mixture
of Static and Switching sites). RaMoSS combines M3 with
CLM3 to account for a RaMoSS site in an alignment, as first
suggested by Galtier (2001). M0, M3, CLM3, and RaMoSS all
share the same DNA submodel restricted to allow the fixation
of single nucleotide mutations only. A counterpart model
was formulated for each CSM to allow fixation of DT muta-
tions. These models, MOWDT, M3wDT, CLM3wDT, and
RaMoSSwDT, provide a series of alternatives to test for evi-
dence of the fixation of DT mutations, and represent a range
of opportunities for PL that might potentially lead to incor-
rect conclusions about the data-generating process.

To illustrate that signatures for the fixation of DT muta-
tions can be detected in real data using each of the four
model-M versus model-MwDT contrasts, we start with an
analysis of 12 concatenated H-strand mitochondrial DNA
sequences (3,331 codon sites) from 20 mammalian species
as distributed in alignment form by the PAML software pack-
age (Yang 2007). Fixation of DT mutations was detected in
this alignment by all four contrasts. However, the inferred
proportion of fixations that were DT, as well as the PRD
attributed to the MLEs of the DT parameters, decreased
with each incremental increase in the complexity of the sub-
model for selection. This trend is consistent with the hypoth-
esis that DT parameters carry PL in proportion to the degree
to which the submodel for selection is underspecified, and
casts doubt on the veracity of the detection of DT in the real
alignment.

Next, we report the results of three simulation studies, all
of which used alignments generated with point mutations
only. In the first, alignments were generated under RaMoSS
with parameters set to those estimated from the real mtDNA
alignment. The RaMoSS versus RaMoSSwDT contrast reliably
failed to reject the null hypothesis of no DT fixations in all trials.
In the second, alignments were generated to be misspecified
with respect to RaMoSS using a CSM that assigned a different
rate ratio to each site. The purpose was to exemplify the tra-
ditional approach of simulating with a more complex CSM to
assess the impact of misspecification. The RaMoSS versus
RaMoSSwDT contrast failed to reject the null hypothesis of
no DT fixations in 95% these trials. In the past, this would have
been considered satisfactory evidence for the reliability of the
contrast, and used to support the veracity of the detection of
DT in the real mtDNA alignment. However, the RaMoSS versus
RaMoSSwDT contrast incorrectly rejected the null in >40% of
trials in the third simulation study for which the mutation-
selection (MutSel) framework (Halpern and Bruno 1998) was
used to generate alignments. The MutSel generating proce-
dure that was used (MutSel-mmtDNA) was designed to pro-
duce alignments to match the real mammalian mtDNA as
closely as possible. The results of the third simulation suggest
that the submodel for selection under RaMoSS was often in-
sufficiently sensitive to signatures of heterotachy to protect DT
parameters against PL.

Our analysis of DT is followed by two more examples that
demonstrate the utility of the PL concept. When RELAX

(Wertheim et al. 2014) was fitted to the real mtDNA align-
ment, it detected significant relaxation of selection pressure
(via a single parameter m) in the primate clade. However, it
also detected relaxation in the same clade in 31 out of 50
alignments generated under MutSel-mmtDNA with no relax-
ation. This suggests that the MLE for m has the potential to
carry PL. By contrast, we found no evidence for variation in dS
across sites when M3wdS (our name for the CSM that
accounts for variations in dS across sites, Kosakovsky Pond
and Muse 2005) was fitted to the same 50 alignments, despite
detecting such variations in the real mtDNA alignment using
the same model. This suggests that the parameters for dS
variation under M3wdS do not carry PL, and that the signal
detected in the real alignment was genuine. Taken together,
our findings have broad implications about the formulation
and experimental validation of CSMs. Specifically, we main-
tain that only alignments generated with realistic variations in
the evolutionary process across sites and over time can reveal
pathologies arising from PL, and that such pathologies are not
necessarily evident when a model is tested using alignments
generated under the traditional modeling framework.

New Approaches

Modeling a Mixture of Static and Switching Sites:
RaMoSS

Many commonly used CSMs assume either that rate ratios
vary across sites but not time (e.g, the M-series models of
Yang et al. 2000), or that temporal variations occur at all sites
(eg, the branch-site models of Guindon et al. 2004
Kosakovsky Pond et al. 2011; Murrell et al. 2015). One excep-
tion is the branch-site model of Yang and Nielsen (2002),
which allows some sites to evolve under the same rate ratio
across the whole tree, and others to switch from a stringent or
neutral selection regime to positive selection at a specific
location in the tree. The location of the switch, based on prior
information, is treated as a fixed effect. Although this ap-
proach is well suited for identifying episodic directional selec-
tion on a specific branch, it is inappropriate for detecting
random site-specific variations in rate ratio. Since real align-
ments might include both static and switching sites, we pro-
pose a new model, RaMoSS, that combines the standard
M-series model M3(k =2) (hereafter, simply M3) with the
covarion-like model CLM3(k=2) (hereafter, CLM3) (cf,
Galtier 20071; Guindon et al. 2004). Specifically, RaMoSS mixes
(with proportion pjs3) one selection submodel with two rate-
ratio categories (o < (7 that are constant over the entire
tree with a second selection submodel (with proportion
pcms = 1 — pms) under which sites switch randomly in
time between ' < @, at an average rate of 0 switches
per unit branch length. See Materials and Methods for addi-
tonal details.

Quantifying PL

Phenomenological load can be quantified using the concept
of statistical deviance. Let Py (x| T, Opm) be the probability of a
site pattern x under a model M, topology T, and vector of
model parameters O This defines a distribution on the set of
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all possible site patterns. Under the usual assumption that
sites are independently and identically distributed (iid), the
probability of an alignment X is the product of the probabil-
ities of its site patterns:

Pm(XIT, On) = HPM "IT. On) Q)

where h is the site index for n sites. Equation (1) defines a
distribution on the set of all possible alignments, meaning
that X is the variable. Under the ML framework, the vector Oy,
is considered to be the variable instead. To signify this, the
probabilities in (1) are called likelihoods and are written with
Om as the argument:

m(Om|X, T) HLM Om|x", T) )

It is standard practice to apply a natural-log transform to
(2) to obtain what is called the log-likelihood (LL) of 0y under
the model M:

EM(9M|X, T) =In {LM(6M|X; T)}
k
= yiln {Lm(Omlxi, T)} 3)
i=1
The x; € {xq,...,xc} represent the unique site patterns in

the alignment, each of which occurs y; times.

The objective of the ML approach is to find the vector that
maximizes equation (3). The resulting vector is called the
maximum likelihood estimate (MLE) of 0y, denoted HM
Speaking metaphorically, QM accounts for or “absorbs”
much of the variance in the site-patterns of the allgnment
as possible. More formally, HM minimizes the deviance of the
fitted model, which is defined as the difference between the
LL of the fitted model and the LL of the most general iid
model (a.ka, the saturated model, Ms). The MLE of the prob-
ability of a site pattern x; under Ms can be shown to be its
observed relative frequency y;/n. Hence, the LL for the satu-
rated model is:

fns (X Zylln (vi/n) 4)

To provide an interpretation, consider that any CSM fitted
to an N-taxon alignment of mtDNA can be thought of as a
multinomial distribution for the 60N possible site patterns (or
61N for nuclear DNA). Ms is the unique multinomial distri-
bution defined by the vector of observed relative frequencies
(yi/n,...,yk/n). In other words, the saturated model is
specified by the empirical site-pattern distribution of X.
Because it takes none of the mechanisms of mutation or
selection into account, ignores the phylogenetic relationships
between sequences (i.e, is independent of T), and excludes
the possibility of site patterns that were not actually observed
(i.e, the probability of a site pattern that was not observed is
assumed to be 0), Ms can be construed as the maximally
phenomenological explanation of X. The salient feature of
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(4) is that it is always larger than the LL for any CSM. It is
in this sense that Ms is saturated, akin to a regression model
with the same number of predictor variables as observations.
For this reason, Ms provides a natural benchmark for model
comparisons.

The selection submodel under MO consists of one rate
ratio for all sites, similar to a regression model that fits an
intercept only. The deviance under MO is defined as:

Dmo = —Z{EMO(éMdX, T) — Iws(X) } (5)

Equation (5) provides a baseline with which to compare
changes in deviance for other model contrasts. For example,
suppose My, is the same model as M but with one extra
parameter . The statistical significance of this new parame-
ter can be assessed by conducting a hypothesis test based on
the log-likelihood ratio (LLR) statistic for the M versus My,
contrast:
= =2{lm(Om|X,T) —

LLR = DM — DM\/I él\/\w (é/\/\w |Xa T>}

(6)

Equation (6) is an absolute measure of the decrease in
deviance caused by the addition of y/ to M. An alternative
relative measure is what we call the percent reduction in
deviance (PRD):

Dm — Dm

PRD(})) = Y % 100% )

Mo

This quantity can be construed as reflecting the strength of
the signature for the process represented by 1y combined
with random error and possibly PL. However, if an alignment
is generated with i/ set to the value that precludes the pro-
cess it represents (e.g, Y = 0), then PRD(1) is due to PL and
random error only; we use the notation PL(tp) in place of
PRD(1)) to emphasize that this is the case. It is this scenario
that can lead to false biological conclusions.

Assessing the Realism of Alignments Simulated under
MutSel

The standard way to assess the sensitivity of a CSM to mis-
specification has been to fit the model to alignments simu-
lated using another, perhaps more complex, CSM (Anisimova
et al. 2001, 2002; Wong et al. 2004; Zhang 2004; Kosakovsky
Pond and Frost 2005; Yang et al. 2005; Zhang et al. 2005;
Kosakovsky Pond et al. 2011; Yang and dos Reis 2017; Lu
and Guindon 2014). The problem with this approach is
that alignments generated under even a relatively complex
CSM are not misspecified in the same way as real data. Off-
the-shelf CSMs make the unrealistic assumption that all sites
evolve under the same vector of stationary frequencies, and
assume that all nonsynonymous substitutions have the same
probability of fixation for a given rate ratio. These assumption
preclude the generation of realistic levels of variation in rate
ratio across sites and over time, and have until now prevented
recognition of the problem that we call PL. The MutSel frame-
work of Halpern and Bruno (1998) provides a way to evolve a
codon site over a tree that is consistent with the dynamics of
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an ideal Wright—Fisher population on a static fitness land-
scape. Under this framework, each site can be assigned its
own vector of fitness coefficients. Amino acid proclivities and
the stringency of selection reflected by the average rate ratio
at a site can therefore be made to vary across sites in a way
that is consistent with a real alignment. Alignments generated
under MutSel can also exhibit heterotachy, which may com-
prise a significant proportion of the total variation in a real
alignment (Lopez et al. 2002; Jones et al. 2017). MutSel there-
fore seems to be the ideal framework for generating realistic
data with which to assess the reliability of a CSM.

The degree to which an alignment generated under
MutSel mimics real data is in large part dependent on how
site-specific fitness coefficients are specified. The most direct
approach is to make use of site-specific amino acid frequen-
cies derived from real data. For example, Spielman and Wilke
(2016) estimated vectors of site-specific fitness coefficients
from codon frequencies observed in structurally curated
alignments of at least 150 taxa. These were then fed into
Pyvolve (Spielman and Wilke 2015a), among the first open-
source software packages with the option to evolve sites using
the MutSel framework, to produce simulations of the original
alignments. To explore how model misspecification might
have influenced our analysis of the 20-taxon alignment of
mammalian mtDNA, it was necessary to simulate alignments
consistent with those data. Unfortunately, the methods pre-
sented in Spielman and Wilke (2016) are inappropriate for
such a limited number of taxa. We therefore devised a new
method for generating plausible vectors of site-specific fitness
coefficients, which we call MutSel-m(ammalian)mtDNA. A
detailed description of MutSel-mmtDNA is provided in the
Supplementary Material online that accompanies this article.

More important than the new method of simulation is the
way it was assessed for realism. We validated MutSel-mmtDNA
by comparing distributions of summary statistics from simu-
lated alignments to those of the real mtDNA alignment. The
summary statistics considered were 1) the distribution of the
number of amino acids per codon site, 2) the overall amino acid
and codon frequencies, and 3) the frequency with which each
pair of amino acids appeared together in the same site pattern.
In addition, the expected distribution of simulated scaled selec-
tion coefficients for all mutations, all substitutions, all nonsy-
nonymous mutations, and all nonsyonymous substitutions
generated under MutSel-mmtDNA were compared with their
empirical counterparts reported by Tamuri et al. (2012). The
choice to use an alignment of mammalian mtDNA was largely
motivated by the availability of these empirical distributions,
which were derived from a concatenated alignment of 12 genes
(3,598 codon sites) from 244 mammal species.

Results

Putative DT Mutations Are Detectable in a Real
Alignment

Our objective was to use DT as a case study to test the
hypothesis that an underspecified selection submodel com-
bined with confounding can lead to false biological conclu-
sions due to PL. The first step was to identify DT in a real

alignment. To that purpose, models M0, M3, CLM3, and the
new model RaMoSS, as well as their counterpart models that
allow fixation of DT mutations, were fitted to the alignment
of 20 mammalian mtDNA sequences. The tree with branch
lengths obtained by ML under the best fitting model
(RaMoSSwDT) is depicted in figure 1. Table 1 lists the log-
likelihood (LL) and parameter estimates for each model.
Table 2 shows the results for various model contrasts.

The log-likelihood ratios (LLR) were statistically significant
for MO versus M3, M3 versus CLM3, and CLM3 versus
RaMoSS (table 2). Collectively, these contrasts provide evi-
dence for variation in rate ratio across sites and branches, and
support the existence of both static and temporally dynamic
sites within the alignment. The four contrasts of the form
model-M versus model-MwDT were also statistically signifi-
cant, and therefore apparently detected fixation of DT muta-
tions. However, the signal for DT became weaker with each
increment in the complexity (i.e, number of parameters) of
the selection submodel. The proportion of fixed mutations
that were DT was inferred to be 23.6% under the simplest
model contrast MO versus MOwDT. Accounting for variations
in rate ratio across sites (M3 vs. M3wDT) reduced this to
17.0%. By allowing sites to switch rate ratio (CLM3 vs.
CLM3wDT), and allowing a mixture of static and switching
sites (RaMoSS vs. RaMoSSwDT), the DT proportion was fur-
ther reduced to 13.5% and 9.7%, respectively. Similarly, the
PRD(&, f3) decreased from 1.11% for the MO versus MOWDT
contrast to 0.36%, 0.14%, and 0.06% under M3 versus
M3wDT, CLM3 versus CLM3wDT, and RaMoSS versus
RaMoSSwDT, respectively.

Next, we conducted an investigation to determine which
site patterns contributed the most to the 42-point difference
in LL for RaMoSS (LL=—88,677) as compared with
RaMoSSwWDT (LL = —88,635). Of the 3,331 sites patterns, 83
were fixed, 25 had nonsynonymous differences only, 1,730
had synonymous differences only, and 1,493 were mixed
with both synonymous and nonsynonymous differences.
The contribution of each of these site-pattern categories to
the total LL under RaMoSS and RaMoSSwDT s listed in
table 3. RaMoSSWDT provided a slightly better fit to the
2.49% of site patterns that were fixed. This is because fixed
sites become less likely as branch lengths increase, and
RaMoSS produced larger branch lengths than RaMoSSwDT
(supplementary fig. 1, Supplementary Material online). These
sites accounted for only 3 the total difference of 42 LL points.
Less than 1% of all sites patterns had nonsynonymous differ-
ences only. RaMoSSwDT fitted these sites slightly better, as
expected given that allowing fixation of DT mutation
increases the probability that a nonsynonymous substitution
will occur. But since there were so few site patterns in this
category, the total contribution was only 1 out of 42 LL points.
Approximately 52% of site patterns had synonymous differ-
ences only. RAMoSSwDT provided a slightly worse fit to these
sites. Most synonymous differences can be explained by a
single nucleotide substitution at the third codon position.
Allowing fixation of DT mutations, most of which are non-
synonymous, apparently reduces the probability of a site pat-
tern with synonymous differences only. This effect was very

1477

610z Aieniga ] uo Jasn AlsiaAlun aisnoyeq Agq 06£SS61/E L1 L/9/GEN0BASR-8011B/aq W/ W0 dNO"dIWapE.//:SdNy WO} PapEojuMO(]


Deleted Text: -
https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msy049#supplementary-data
Deleted Text: (i
Deleted Text: (ii
Deleted Text: (iii
Deleted Text: to
Deleted Text: m
Deleted Text: a
Deleted Text: d
Deleted Text: r
Deleted Text: a
Deleted Text: vs
Deleted Text: vs
Deleted Text: vs
Deleted Text: vs
Deleted Text: vs
Deleted Text: vs
Deleted Text: vs
Deleted Text: vs
Deleted Text: vs
Deleted Text: -
Deleted Text: to
Deleted Text: -
https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msy049#supplementary-data
https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msy049#supplementary-data

Jones et al. - doi:10.1093/molbev/msy049

MBE

1 African

1 chimpanzee
-1 bonobo

1 gorilla

1 orangutan

- 1 cow
L —{ Eu 1 fin whale
- - blue whale
i—u
S

1 Sumatran orangutan
S -1 common gibbon

1 harbor seal

7 grey seal

1 cat

1 horse

7 Indian rhinoceros

1 rat
7| mouse

L - wallaroo
B 8 - opossum
a

1 platypus

2.5 3 3.5

Fic. 1. The phylogeny for the concatenation of 12 H-strand mitochondrial DNA sequences (3,331 codon sites) from 20 mammalian species
distributed by the PAML software package (Yang 2007). The topology is that reported in Cao et al. (1998). Branch lengths (expected number of
single nucleotide substitutions per codon) were estimated using RaMoSSwDT (the best fitting of the models used in this study). The scale on the
horizontal axis is the number of single nucleotide substitution per codon.

Table 1. Log-Likelihood (LL) and Parameter Estimates for Each Model Fitted to the Mammalian mtDNA Alignment Shown in figure 1.

Model LL Rate Ratios Proportions Switching S,D, T
Ms —26,752
Mo —92,006 o = 0.04
m3 —89,162 (&g, 1) = (0.01,0.15) po = 0.71 .
cLms3 —88,880 (G20, 1) = (0.00,0.21) po = 0.77 5 =0.06
RaMoSS —88,677 (G20, 1) = (0.00,0.08) Pz = 0.73,p, = 0.80 X
(@, @}) = (0.01,0.44) p, = 0.66 0=0.21
MOwDT —91,280 @y = 0.03 76.4%, 21.5%, 2.1%
M3wDT —88,930 (2o, 1) = (0.01,0.12) po = 0.71 83.0%, 16.7%, 0.3%
CLM3wDT —88,786 (@9, 1) = (0.00,0.16) po = 0.75 0 =0.06 86.5%, 13.5%, 0.0%
RaMoSSwDT —88,635 (&, 1) = (0.00,0.08) Pms = 0.68,p, = 0.80 . 90.3%, 9.7%, 0.0%
(@, @) = (0.02,0.34) Py =0.73 6=0.12
Table 2. Results for Model Contrasts Applied to the Mammalian mtDNA Alignment Shown in figure 1.
Contrast Testing For. .. LLR Crit.val. Detected PRD
MO vs. M3 var. across sites 5,668 5.99 Yes 4.36%
M3 vs. CLM3 var. across time 564 2.71 Yes 0.43%
CLM3 vs. RaMoSS static and switching sites 406 9.49 Yes 0.31%
MO vs. MOWDT DT mutations 1,452 5.99 Yes 1.11%
M3 vs. M3wDT DT mutations 464 5.99 Yes 0.36%
CLM3 vs. CLM3wDT DT mutations 188 5.99 Yes 0.14%
RaMoSS vs. RaMoSSwDT DT mutations 84 5.99 Yes 0.06%

small however, contributing a difference of only —1 LL points,
despite the large number of site patterns in this category.
Approximately 45% of sites had mixed site patterns, and these
accounted for 39 out of the 42 LL points difference between
RaMoSS and RaMoSSwDT. This demonstrates that mixed site
patterns are more likely when the model permits fixation of
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DT mutations. Critically, mixed site patterns are also more
likely to exhibit heterotachy (Jones et al. 2017). Of the
297 site patterns with a posterior probability of switch-
ing > 0.80 (computed using RaMoSSwDT), 289 had mixed
site patterns. The remaining 8 were among the site patterns
with nonsynonymous differences only. This suggests that the
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Table 3. Each Row Reports the Number (and %) of Sites in the Corresponding Site-Pattern Category, the LL under RaMoSS and RaMoSSwDT, the
Total Change in LL Associated with Each Category, and the Number of Sites for which the Posterior Probability of Switching was > 0.80.

Site-Pattern Cat. Number (%) RaMoSS LL
fixed 83 (2.49) —519
Nonsynonymous 25 (0.75) —497
Synonymous 1,730 (51.94) —34,214
Mixed 1,493 (44.82) — 53,447
Total 3,331 —88,677

RaMoSSwDT LL ALL Post. > 0.80
—516 3 0
—496 1 8
—34,215 —1 0
—53,408 39 289
—88,635 42 297

process whereby rare episodic DT mutations are fixed can be
confounded with the process of shifting balance (Jones et al.
2017), since both can produce signatures consistent with
heterotachy.

A heuristic method for inferring DT mutations is to exam-
ine sites occupied by serine only (Averof et al. 2000). Codon
aliases for serine include TCN, where N is any nucleotide, and
AGY, where Y is a pyrimidine. Minimum paths between TCN
and AGY by single nucleotide steps require substitution to
cystine or threonine. But these amino acids are physicochem-
ically different than serine, and can be assumed to be less fit
than serine at a site observed to be occupied by serine only.
The existence of serine sites with a mix of TCN and AGY
would therefore suggest that some double mutations of the
form TC < AG were fixed. However, of the 112 serine sites in
the real mtDNA alignment, one site was occupied by a single
alias for serine, 19 were occupied by a combination of AGT
and AGC, and 92 were occupied by a combination of TCC,
TCT, TCA, and TCG. Aliases from the AGY and TCN groups
did not appear together at any site. This result, combined
with the observed decrease in the strength of the evidence for
DT with each incremental increase in the complexity of the
selection submodel, casts doubt on the veracity of the detec-
tion of fixed DT mutations in the real mtDNA under RaMoSS
versus RaMoSSwDT. Simulation studies were therefore con-
ducted to investigate the possibility of false detection of DT,
as reported in the next section of this article.

The Extent to Which DT Parameters Carry PL Is
Related to Model Misspecification

There is substantial heterogeneity in selection pressure across
sites within the mammalian mitochondrial genome (Garvin
etal. 2015). It is therefore likely that the single rate ratio of MO
provides a highly inadequate summary of variations due to
selection effects in the real mtDNA alignment. Our analysis
resulted in a substantial PRD for the MO versus MOWDT con-
trast (1.11% PRD, corresponding to a highly significant LLR of
1,452) and a relatively large estimated proportion of fixed
mutations that were DT (23.6%). If those estimates were
influenced by PL, we would expect a reduction in both
with an increase in the complexity of the selection submodel.
This is exactly what was observed. RaMoSS versus
RaMoSSwDT resulted in a much smaller PRD (only 0.06%)
and indicated that a smaller proportion of fixed mutations
were DT (9.7%). However, even the selection submodel under
RaMosSS is likely to be underspecified compared with the
actual data-generating process.

Three simulations studies were conducted to assess the
relationship between model misspecification and the PL
detected by the four M versus MwDT contrasts. Each study
was conducted using a different alignment generating model,
all of which did not include fixation of DT mutations. In the
first simulation study, alignments were generated under
RaMoSS. This study included the scenario for which the selec-
tion submodel of the RaMoSS versus RaMoSSwWDT contrast
was not misspecified, although the selection submodel of the
other three model contrasts were underspecified to some ex-
tent. In the second simulation study, alignments were gener-
ated under a substantially more complex CSM, having an
independent rate ratio for each site. Alignments were therefore
generated with more variation in rate ratio across sites than
accounted for by any of the M versus MwDT contrasts. In the
third simulation study, alignments were generated under
MutSel-mmtDNA to have variation across sites and over
time comparable (as will be shown) to the real mtDNA align-
ment. We demonstrate that, although the pathology we call PL
was readily identified in all simulation studies under the con-
trast with the simplest selection submodel (MO0 vs. MOWDT), it
was only detected under the most complex contrast (RaMoSS
vs. RaMoSSwDT) in alignments generated using the more re-
alistic MutSel-mmtDNA generating model.

Simulation Study 1: MLEs for the DT Process Carry
Substantial PL When the Selection Submodel Is
Underspecified, but False Conclusions Are Avoided
When the Selection Submodel Is Correctly Specified
In the first simulation study, one-hundred 300-codon align-
ments were generated on the tree depicted in figure 1 using
RaMoSS as the generating model. A starting sequence was
constructed by selecting codons in proportion to their em-
pirical frequencies estimated from the real mtDNA. All
alignments were generating starting with this same se-
quence. Parameters for the selection submodel (including
g, W1, Po, Wy, W}, Py, Pm3 and J) were set to values esti-
mated from the real mtDNA alignment using RaMoSSwDT
(i.e, the best fitting model; see table 1 for parameter values).
Similarly, parameters for the DNA submodel, including x
and position-specific nucleotide frequencies, were set to
values estimated from the real alignment, except that o
and f3 (i.e, the parameters that specify the rate of double
and triple mutations, see Materials and Methods) were set
to 0 to exclude fixation of DT mutations. Table 4 shows
median results for the various likelihood ratios tests
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Table 4. Median Values for Log-Likelihood Ratios (LLR) and the Number of Times DT was Detected from 100 Alignments Generated under

(RaMoSS, M3(k = n), MutSel-mmtDNA) with o = § = 0.

Contrast Trials Testing For. . . Median LLR Crit.val. Detected
MO vs. M3 100 var. across sites (171, 867, 767) 5.99 (98, 100, 100)
M3 vs. CLM3 100 var. across time (34.0, 5.88, 30.6) 2.71 (99, 75, 100)
CLM3 vs. RaMoSS 100 static and switching sites (19.6, 62.9, 57.1) 9.49 (95, 98 100)
MO vs. MOWDT 100 DT mutations (29.7, 63.3, 147) 5.99 (99, 100, 100)
M3 vs. M3wDT 100 DT mutations (5.69, 1.03, 25.7) 5.99 (49, 10, 97)
CLM3 vs. CLM3wDT 100 DT mutations (0.01, 0.20, 12.3) 5.99 (3,3,76)
RaMoSS vs. RaMoSSwDT 100 DT mutations (0.00, 0.01, 4.34) 5.99 (0, 5, 41)
(see supplementary table 1, Supplementary Material online, N Z(u) nf’AZ.’E,-j

for median parameter estimates). W == 8

The contrast with the simplest selection submodel (M0
vs. MOWDT) incorrectly rejected the null hypothesis and
inferred DT mutations in almost all trials (99/100).
Improving the selection submodel by accounting for var-
iations in rate ratio across sites (M3 vs. M3wDT) yielded a
substantial reduction in the false positive rate (49/100).
Accounting for heterotachy (CLM3 vs. CLM3wDT and
RaMoSS vs. RaMoSSwDT) further reduced the number
of false positives to 3/100 and 0/100, respectively.
RaMoSS provided the best fit in all trials, and produced
median parameter estimates similar to their generating
values: @ =0.00(generating ,=0.00),®;= 0.03(0.08),
po=0.86(0.80), ()= 0.01(0.01), &, = 0.44(0.44), py =
0.88 (0.66),pp; =0.72(0.73) and 0 =0.17(0.21). It was no
surprise to find that RaMoSS produced reliable parameter
estimates, and that RaMoSS versus RaMoSSwDT did not
falsely detect the fixation of DT mutations, since RaMoSS
was an exact match to the generating process. However, it
was interesting to find that the MLEs & and f for the DT
process carry substantial PL when the selection submodel
is underspecified (as indicated by the high false detection
rate). In particular, DT was only detected by the two
models that did not account for heterotachy (M0 and
M3). This demonstrates that random variations in site-
specific rate ratios, produced in this simulation study by
the CLM3 component of the generating model, can create
false signal for the episodic fixation of DT mutations when
heterotachy is not accounted for by the selection
submodel.

Simulation Study 2: Improving the Selection
Submodel Reduces PL Even When the Submodel Is
Substantially Underspecified

In the second simulation study, one-hundred 300-codon
alignments were generated on the tree depicted in figure 1
using what we call M3(k = n) as the generating model (where
n is the number of codon sites). The objective was to produce
the same level of variation in rate ratio across sites as in the
real mtDNA, but without heterotachy, using the following
procedure. First, a vector of codon fitness coefficients f"
was drawn for each site using the MutSel-mmtDNA model
(see Supplementary Material online). The MutSel rate matrix
A" was then constructed with o = f = 0 and used to deter-
mine the expected rate ratio for the site:
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where /j; is an indicator for nonsynonymous codon pairs
(i, j), the nf“ are site-specific stationary frequencies for the
60 codons, and Mj; is the rate of mutation from i to j
(Spielman and Wilke 2015b; Jones et al. 2017). The rate
matrix Q" for the site-specific generating model was then
constructed using equation (10) in Materials and
Methods. Note that the rate ratio at a site evolving under
Q" (eg, under MO with rate ratio ") is always
" regardless of the incumbent codon. An alignment gen-
erated using the set of Q" will therefore have the same
level of variation in the expected rate ratio across sites as
an alignment generated using the A" (e.g., using MutSel-
mmtDNA), but without heterotachy. Furthermore, all of
the Q" share the same vector of stationary frequencies
(whereas each A" generated under MutSel-mmtDNA has
its own vector of site-specific frequencies).

Table 4 shows median results for the various likelihood
ratios tests (see supplementary table 2, Supplementary
Material online, for median parameter estimates). As
expected, the MO versus M3 contrast detected substantial
signal for variations in rate ratio across sites in all trials.
Quite unexpected was the result that the M3 versus CLM3
contrast implied signal for heterotachy in 75/100 trials. This is
in apprent contradiction to the design of the generating pro-
cess, which precluded heterotachy. However, the signal for
changes in rate ratio over time was relatively weak: the me-
dian switching rate was only § = 0.02 or one switch per 50
single nucleotide substitutions. Furthermore, the median LLR
for M3 versus CLM3 was only 5.88 (compared with the critical
value of 2.71 for a 5% test) with a corresponding P value of
0.008. Given that CLM3 is equivalent to M3 when ¢ = 0, these
results are not entirely inconsistent with sites evolving under
fixed rate ratios. Nevertheless, they seem to indicate that ¢
carried some PL in three-quarters of the trials. The CLM3
versus RaMoSS contrast similarly implied a fraction of sites
with signal for heterotachy. The LLR for this contrast was
significant in 98/100 trials (median LLR =62.9), but with a
very small switching rate (0 = 0.00). RaMoSS is the same as
M3(k = 4) when 6 =0, so in this case it seems that RaMoSS
provided the better fit not because of PL on 9, but because
four w-categories provided a significantly better fit than two,
apparently reflecting the generated level of variation in
across sites.
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Turning to the tests for fixation of DT mutations, the
contrast involving the simplest selection submodel (MO vs.
MOwDT) incorrectly inferred DT mutations in all 100 trials
(table 4). Again, improving the selection submodel substan-
tially reduced the false positive rate. Even limited accommo-
dation of variations in rate ratio across sites using M3 (e.g,
with only two rate-ratio categories) reduced the false positive
rate to 10/100. This was reduced further to only 3/100 and 5/
100 by CLM3 versus CLM3wDT and RaMoSS versus
RaMoSSwDT. These rates are consistent with the 5% level
of significance of the likelihood ratio test, and seem to imply
that both CLM3 versus CLM3wDT and RaMoSS versus
RaMoSSwDT will reliably fail to detect the fixation of DT
mutations when they do not occur. However, the generating
model M3(k =n) is unrealistic, and in particular does not
simulate heterotachy or variations in site-specific amino
acid propensities. A more rigorous test of the reliability of
the RaMoSS versus RaMoSSwWDT contrast for detecting DT
requires use of a more realistic alignment-generating process.

Simulation Study 3: RaMoSS versus RaMoSSwDT s
Unreliable When Fitted to Data Generated Using
MutSel-mmtDNA
The M3(k = n) generating model reflects the traditional ap-
proach of testing the impact of model misspecification by
simulating alignments using a more complex CSM. However,
the absence of heterotachy and site-specific stationary fre-
quencies means that the simulated distribution of site pat-
terns can only be unrealistic compared with the real mtDNA
alignment. In the third simulation study, one-hundred 300-
codon alignments were generated on the tree depicted in
figure 1 using the generating process we call MutSel-
mmtDNA, which was formulated to produce alignments
that match the real mtDNA alignment as closely as possible.
In this section, we report the results of the model fits; the
results of comparisons between alignments generated using
MutSel-mmtDNA and the real alignment are reported in the
next section. Comparison with table 1 shows that median
parameter estimates (reported in supplementary table 3,
Supplementary Material online) under RaMoSS were similar
to those estimated from the real mtDNA alignment using the
same model (we use RaMoSS rather than RaMoSSwDT for
this comparison because the alignments were simulated with-
out DT substitutions). The median values under RaMoSS
were: @y = 0.00 (compared to @, = 0.00 for the real
mtDNA), @&; = 0.12 (0.08), p, = 0.82 (0.80), & =
0.00 (0.01), @, = 0.56 (0.44), py = 0.60 (0.66), Py; =
0.80 (0.73) and " 0 = 0.20 (0.21). These results suggest a
substantial degree of “phenomenological similarity” between
the real and simulated alignments. Note that this was not by
design, since the MLEs derived from the real mtDNA align-
ment were not used in the formulation of MutSel-mmtDNA;
the similarity was a consequence of the method used to
generate site-specific fitness coefficients (see Supplementary
Material online).

The impact of PL when the models were fitted to align-
ments generated under MutSel-mmtDNA is apparent in

2+ o o PRD(&,B)7 for an alignment simulated with DT
¢ PRD((&,[Q)7 for the real mtDNA
1.5+ B
& —
& 1L —O— |
3
[a W
o
0.5F B
Q- =
= ]
0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,% ,,,,,,, == |
MOwDT M3wDT CLM3wDT RaMoSSwDT

Fic. 2. Boxplots show the distribution of PL(4, ff) for each of the M
versus MwDT model contrasts fitted to 50 full-scale alignments (20
taxa, 3,331 codon sites) generated under MutSel-mmtDNA with
o = ff = 0. Diamonds show PRD(&,B) for each contrast fitted to
the real mtDNA. Squares show the PRD(4, B) for each contrast fitted
to a full-scale alignment generated under MutSel-mmtDNA with o
and f§ set to values estimated from the real mtDNA using
RaMoSSwDT. Circles indicate outliers in PL(4, B) for the correspond-
ing boxplot.

table 4. The contrast involving the simplest selection submo-
del (MO vs. MOWDT) incorrectly inferred DT in all 100 trials, as
might be expected given previous results. However, unlike the
previous two simulation studies, accounting for variations in
rate ratio across sites (M3 vs. M3wDT) had negligible impact
on the false positive rate (97/100). Although accounting for
heterotachy (CLM3 vs. CLM3wDT and RaMoSS vs.
RaMoSSwDT) reduced the number of false positives (to 76/
100 and 41/100, respectively), the lowest rate was still too
large given the 5% level of significance of the test. We con-
clude that the selection submodel for RaMoSS is underspe-
cified with respect to MutSel-mmtDNA, with the result that
substantial PL was conferred onto & and f in a large number
of trials.

It now seems plausible that the detection of DT in the real
mtDNA was a false positive due to PL. If we can assume that
MutSel-mmtDNA produces alignments consistent with the
real data, then it can be used to estimate the distribution of
PL(&, 3 for each of the M versus MWDT model contrasts. To
this end, MutSel-mmtDNA was used to generate 50 full-scale
alignments, each with 3,331 codon sites, without fixation of
DT mutations. Each model contrast was fitted to produce
distributions of PRD(4, f3). Because « and 5 were set to 0 in
the generating process, we can equate PRD to PL. The result-
ing distributions are shown as boxplots in figure 2, where the
previously described decline in the PRD(4, f3) obtained by
fitting the contrasts to the real mtDNA (last column of ta-
ble 2) is reflected by a similar decline in the median PL(, f3)
with each incremental increase in the complexity of the se-
lection submodel.

The diamond in each boxplot of figure 2 marks the
PRD(&, f3) for the corresponding contrast fitted to the real
mtDNA alignment. This value falls just within the upper tail of
the estimated distribution of PL(4, f3) for the RaMoSS versus
RaMoSSwDT contrast. For comparison, a single full-sized
alignment was generated using MutSel-mmtDNA with o
and f set to the values estimated by RaMoSSwDT fitted to
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the real mtDNA (e.g, with 9.7% double and 0.0% triple muta-
tions, see table 1). The small square in each boxplot marks the
PRD(4, f3) obtained by fitting each contrast to this alignment.
As the signal for DT mutations was real in this case, PRD(4,
[3) cannot be not equated to PL(&, f3), but can be interpreted
as an indication of real signatures for DT, possibly combined
with random error and PL. The decrease in PRD with each
increase in the complexity of the selection submodel is still
evident, and suggests that & and f§ carry some PL. These
comparisons, combined with the large number of false detec-
tions reported in table 4, suggest that the detection of fixa-
tions of DT mutations in the real mtDNA might have been a
false positive.

Alignments Generated under MutSel-mmtDNA Are
Realistic by Several Measures of Comparison

The design of the third simulation study represents a sub-
stantial departure from the first two. We maintain that the
role PL might have played in the analysis of the real mtDNA
can be assessed only insofar as simulated alignments match
real data. Hence, rather than using an M-series CSM as the
generating process, we used the more realistic mutation-
selection (MutSel) framework of Halpern and Bruno (1998).
Under MutSel, each site can be assigned its own vector of
fitness coefficients f". This determines the stringency of se-
lection (the average rate ratio) and temporal dynamics (het-
erotachy) at the site. Our objective was to simulate
alignments with heterogeneity in rate ratio across sites and
time, and in site patterns, consistent with the real mammalian
mtDNA. Here, we report results that show that the method
we developed to achieve this (MutSel-mmtDNA) can pro-
duce alignments similar to the real mtDNA alignment by
several measures of comparison.

Empirical distributions of scaled selection coefficients for
all mutations, all substitutions, all nonsynonymous mutations
and all nonsyonymous substitutions derived from mamma-
lian mtDNA have already been published (Tamuri et al. 2012).
We therefore adjusted our formulation of MutSel-mmtDNA
to make the estimated probability density functions (PDFs) of
our scaled selection coefficients s = 2N, (f — f") match
those as closely as possible. The predicted distributions de-
rived from 10° sites simulated under the resulting MutSel-
mmtDNA model were similar in shape to their empirical
counterparts (cf. supplementary fig. 2, Supplementary
Material online vs. figure 2 in Tamuri et al. 2012) and had
similar probabilities p(sj < —2), p(—=2 < sj < 2) and p
(sj > 2) (table 5). Further comparisons between MutSel-
mmtDNA and the real mtDNA were based on a full-sized
simulated alignment of 3,331 codon sites. Amino acid fre-
quencies for the simulated alignment were highly correlated
with those in the real data (correlation = 0.91, P value < <
0.001, supplementary fig. 3, Supplementary Material online),
as were the codon frequencies (correlation =0.83, P value
< < 0.001). The frequencies with which each pair of amino
acids was observed within a given site pattern were found to
be strongly concordant (correlation =091, P value < <
0.001, supplementary fig. 4, Supplementary Material online).
The distributions of the number of amino acids realized at
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Table 5. Comparison of Interval Probabilities for Scaled Selection
Coefficients s; under the Generating Model MutSel-mmtDNA versus
Those Derived Empirically by Tamuri et al. (2012).

plsy < —2) p(-2 <55 <2) pls;>2)

All mutations 0.61 0.39 0.00
Tamuri et al. (2012) 0.65 0.34 0.01
Nonsyn. mutations 0.90 0.09 0.01
Tamuri et al. (2012) 0.89 0.10 0.01
All substitutions 0.03 0.94 0.03
Tamuri et al. (2012) 0.03 0.94 0.03
Nonsyn. substitutions 0.18 0.64 0.18
Tamuri et al. (2012) 0.14 0.72 0.14

each site were also very similar (supplementary fig. 5,
Supplementary Material online). And the simulated align-
ment had a similar number of fixed, nonsynonymous, synon-
ymous, and mixed site patterns compared with the real data:
(87, 18,2,052, 1,174) in the simulated alignment versus (83, 25,
1,730, 1,493) as reported in table 3.

Evidence of Confounding X

Our simulation studies demonstrate that PL(¢, f3) is related
to the degree to which the selection submodel is underspe-
cified with respect to the data-generating process. As was
stated in the introduction, misspecification alone is insuffi-
cient to produce PL. There must also be some measure of
confounding between the processes governed by the mech-
anistic parameters in the DNA submodel with processes that
generate variations in selection effects. To further illustrate
this issue, we examined the effects of changes in x and o
(both of which are parameters of the DNA submodel) on
the expected number of nonsynonymous substitutions per
unit branch length E(rN) and the predicted switching rate o
(measures that reflect variations in selection effects).
Specifically, we examined the changes in E(rN) and é when
K was increased from 1to 10 with « = § = 0,and changes in
the same when o was increased from 0.015 (corresponding to
2.5% double mutations) to 0.075 (11% double mutations)
with « fixed at 4 and f fixed at 0.

Vectors of site-specific fitness coefficients were first gener-
ated using MutSel-mmtDNA with & = f§ = 0. Each was used
to compute site-specific values for E(rN) and J, once with
k=1 and again with k=10, using previously published
methods (Jones et al. 2017). The resulting distributions for
the change in E(rN) and 0 [AE (rN) and A9, respectively]
with x were both roughly symmetric and centered at 0
(fig. 3A and B). Hence, the same change in kK sometimes
increased, and sometime decreased, both E(rN) and J. The
net effect of changes in k on these two quantities is therefore
negligible when averaged across sites. This result explains why
K carried little or no PL in a subsequent simulation study
under which 100 alignments generated using MutSel-
mmtDNA with k=1 were fitted to both MO(k =1) (i.e,
MO with « fixed at 1) and MO (under which « is estimated):
the MO(x = 1) versus MO contrast reliably failed to reject the
null hypothesis of no transition bias in all trials, despite the
fact that the submodel for selection under MO is highly
underspecified with respect to MutSel-mmtDNA. In the
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Fic. 3. Distributions of the change in the expected number of non-
synonymous substitutions per unit branch length [AE (rN)] and the
expected switching rate (AJ) for 1,000 sites with fitness coefficients
generated using MutSel-mmtDNA. (A) AE (rN) when « is increased
from 1to 10 with o = § = 0, (B) Ad when K is increased from 1to 10
with oo = § = 0, (C) AE (rN) when « is increased from 0.015 to 0.075
with k =4 and ff =0, (D) Ad when o is increased from 0.015 to 0.075
with k =4 and f=0.

second analysis, vectors of fitness coefficients were generated
under MutSel-mmtDNA with Kk =4 and f =0 (to prohibit
fixation of triple mutations). Each vector was used to com-
pute site-specific values for E(rN) and J, with o set to either
0.015 (corresponding to 2.5% double mutations) or 0.075
(11% double mutations). The distributions for AE (rN) and
A indicated that these values are almost always nonnegative
(fig. 3C and D). Hence, an increase in o, generally results in an
increase in the expected nonsynonymous substitution rate
and an increase in the level of heterotachy when its effects are
averaged across sites. These simulations support the view that
the process of episodic fixation of DT mutations can be con-
founded with selection effects, and show how the potential
for a parameter to take on PL might be assessed using the
MutSel framework.

Assessing PL in Other CSMs

The utility of the PL framework for assessing the validity of the
interpretation of model parameters in other CSMs is illus-
trated in this section by applying our methods to two other
inferential scenarios. The first is a test for changes in selection
intensity in one clade compared with the remainder of the
tree (RELAX, Wertheim et al. 2014). Under the RELAX model,
it is assumed that each site evolved with a rate ratio randomly
drawn from @r = {w,..., @} on a set of prespecified
reference branches, and from a modified set of rate ratios
o7 = {o, ..., o]} on test branches, where m is an expo-
nent. Avalue0 < m < 1moves the rate ratios in @t closer
to one compared with their corresponding values in @g, con-
sistent with relaxation of selection pressure at all sites on the
test branches. Relaxation is indicated when the contrast of
the null hypothesis that m =1 versus the alternative that
m < 1 is statistically significant. RELAX was fitted to the real
mtDNA with three w-categories using the HyPhy software

0.2 ‘
PRD(dS) ¢
0.15 1
X oot 1
= 8, PRD(4, )
0.05 - —
E —— PRD(1h)
) S— D e —o 1
RaMoSSwDT RELAX dS Model

FiG. 4. Boxplots show the distributions of PL for parameters in models
fitted to the same 50 full-scale alignments generated under MutSel-
mmtDNA (20 taxa, 3,331 codon sites). Diamonds show PRD for each
contrast fitted to the real mmtDNA. Circles indicate outliers. PL was
statistically significant in 48/50 trials under RaMoSS versus
RaMoSSwWDT contrast, in 31/50 trials under RELAX, and in 0/50 trials
under M3(k = 4) versus M3wdS(k = 4).

package (Kosakovsky Pond et al. 2005). Test branches were
set to all of those in the primate clade, including the long
branch leading to that clade (see fig. 1). The test revealed
significant evidence for relaxation of selection pressure among
the branches in the primate clade (m =0.81, LLR=18, P
value=2.2 x 107>, PRD(m) = 0.015%). The model was
also fitted to the 50 full-scale alignments generated using
MutSel-mmtDNA, under which no relaxation occurred. The
null was falsely rejected in 31/50 trials. Furthermore, PRD()
estimated from the real alignment fell well within the distri-
bution of PL(m) from the 50 simulated alignments (fig. 4).
These results suggest that PL provides a plausible explanation
for the detection of relaxation in selection pressure in the
primate clade of the real mtDNA.

The vast majority of CSMs assume that the synonymous
substitution rate is constant across sites, despite evidence
that dS can vary (particularly in mitochondrial DNA, eg,
Bielawski and Gold 2002). The second scenario is a test for
variation in dS across sites (Kosakovsky Pond and Muse 2005).
This test has no moniker that we are aware of, so it will be
designated here as M3wdS (M3 with changes in dS) due to its
similarity to the M-series model M3 (Yang et al. 2000). Under
M3wdsS, it is assumed that there are k dS categories and k dN
categories that combine to produce k> w-categories.
M3wdS(k) is contrasted with the null model M3(k) that
assumes dS is constant across sites. Rejection of the null is
interpreted as evidence for variations in dS across sites. M3(k)
was first fitted to the real mtDNA using HyPhy with k
€ {3,4,5}. It was found that four categories were sufficient
to account for all of the variation in rate ratio across sites (i.e,,
four categories fit the alignment better than three and just as
well as five) M3(k=4) was then contrasted with
M3wdS(k = 4) using HyPhy. The contrast was found to be
significant (LLR =252, PRD(dS) = 0.19%). The M3(k = 4)
versus M3wdS(k = 4) contrast was then fitted to the 50
full-scale alignments generated using MutSel-mmtDNA. The
null was rejected in 0/50 trials. Furthermore, the phenome-
nological load PL(dS) associated with the parameters for dS
variation was very close to 0 in all 50 trials (fig. 4). These results
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support the interpretation of M3wdS as detecting genuine
variations in dS in the real mtDNA alignment. Interestingly,
there is biochemical support for the notion of spatial variation
in dS within the mitochondrial genome: due to the different
amount of time that mtDNA spends in the single-strand state
during its replication process (Clayton 1982), it will be subject
to different probabilities of spontaneous mutational damage
(Tanaka and Ozawa 1994), which is expected to lead to dif-
ferent synonymous substitution rates (Reyes et al. 1998;
Bielawski and Gold 2002; Raina et al. 2005).

Discussion

Codon substitution models have evolved toward ever increas-
ing complexity since their introduction by Muse and Gaut
(1994) and Goldman and Yang (1994), motivated in part by
the rapid increase in the quantity of information available.
With greater information comes greater opportunity to tease
out the effects of subtle processes. This can be achieved by
adding parameters for such processes to a standard CSM. Or
so it would seem. Sites for which mutation and selection are
in balance can exhibit signatures consistent with random
changes in site-specific rate ratios or heterotachy (e.g, mixed
site patterns, table 3) cause by shifting balance. But signatures
of heterotachy can also be produced by the occasional fixa-
tion of double or triple mutations. Hence, shifting balance
and DT are confounded processes. Consequently, if a CSM
accounts for DT in its DNA submodel but fails to account for
shifting balance in its selection submodel, the rate parameters
(o, 3) will be forced to account for signatures of heterotachy
alone. Our analyses demonstrate that this can result in false
inference for DT, and provides an example of a general prin-
ciple, namely that it is possible for a parameter meant to
support a specific mechanistic interpretation to be inferred
to be statistically significant even if the process it represents
did not occur. When this happens, we say that the parame-
ter's MLE carries PL.

The basal cause of PL was shown to be confounding. We
said in the introduction that two processes are confounded if
they produce a common signature in the data. This implies
that the generating process is the ultimate source of con-
founding. But whether or not counfounding manifests
depends on the relationship between the fitted model and
the data. This is in part because different CSMs are sensitive to
different signatures. For example, the existence of multiple
processes that generate heterotachy has little or no impact on
the estimation of the parameters in MO because this model
ignores temporal dynamics. Our analysis suggests that
RaMoSSwDT overestimated the proportion of fixed muta-
tions that were DT (= 10%), and that this occurred because
the parameter for site-specific shifts in rate ratio (J), and the
parameters for the rates of double (¢;) and triple (§) mutation,
are all sensitive to the same signatures in the alignment, those
consistent with heterotachy. By contrast, in an analysis of a
similar although larger set of mammalian mtDNA (244 taxa
with 3,598 codon sites), Tamuri et al. (2012) inferred DT rates
an order of magnitude smaller (~1% DT). Their model
(swMutSel) utilizes signatures in the alignment that
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RaMoSSwDT is insensitive to in the form of empirical site-
specific codon frequencies. The temporal dynamic at a site is
to a large degree characterized by its site-specific frequencies
(Jones et al. 2017), so their inclusion in swMutSel likely cap-
tured some variation in selection effects due to shifting bal-
ance. This apparently faciliated the detection of distinct
signatures for DT (if DT was real), or else reduced the PL
carried by DT parameters (if it was not). Hence, the degree
to which confounding impacts inference is dependent on the
signatures present in the data that the model is sensitive to, or
in other words on the relationship between model and data.

It can happen that two processes produce signatures that
differ only slightly and in such a way that they are confounded
under a given CMS when information is sparse, but readily
disentangled when information is rich. Such a scenario might
not be uncommon, particularly among mixture models
(Mingrone et al. 2018), but is an issue only if the amount of
data required to ameliorate associated pathologies (e.g, false
positives due to PL) is prohibitively large. Under this scenario,
we say that the processes are only nearly confounded. In our
analyses, by contast, the reduction in deviance engendered by
the inclusion of the parameters for DT was associated with
mixed site patterns in the real mtDNA alignment. A larger
taxonomic sample or the addition of more genes to the con-
catenation would result in more mixed site patterns, and
would presumably increase the probablity of falsely inferring
DT. This is supported by our observation that the false pos-
itive rate for DT under RaMoSS versus RaMoSSwDT increased
from 41% (41/100) to 96% (48/50) among alignments gener-
ated using MutSel-mmtDNA when the number of sites was
increased from 300 to 3,331 (fig. 4). We therefore maintain
that the false detection of fixation of DT mutations by
RaMoSS versus RaMoSSwWDT was not driven by lack of infor-
mation, but by an abundance of information (cf. Kumar et al.
2012). Under the scenario where more site patterns (or more
taxa) only worsen PL, we say that the two processes are per-
fectly confounded. To be clear, the introduction of informa-
tion of a different type into the analysis, such as site-specific
codon frequencies in the case of swMutSel, can potentially
allay pathologies associated with perfect confounding (see
previous paragraph).

It would be helpful to have a means to assess in advance
whether confounding might impact inference under a given
CSM. This was attempted in the section “Evidence of
Confounding,” where it was shown that an increase in k (a
property of the mutation process) is not correlated with an
increase in the rate of fixation of nonsynonymous mutations
(a property of the substitution process), but that an increase
in the double mutation rate is. Such a result is intuitive, since
the fixation of a double mutation at a site along a short
branch [eg, TTA(L) — GCA(A)] can be consistent with
the fixation of two single mutations in rapid succession
[eg, TTA(L) — GTA(V) — GCA(A)], and therefore manifest
as a transient elevation in the nonsynonymous to synony-
mous rate ratio at that site under a model that does not allow
DT. Indeed, such intuition might have been used to predict
the possibility of confounding between episodic elevations in
dN/dS and episodic fixation of DT mutations. However, our
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analysis was based on predictions derived from a mechanistic
model, not by fitting a CSM to data. Given our supposition
that the impact of confounding on inference depends on the
relationship between a CSM and the actual data it is to be
fitted to, it would seem that the only currently available
method to identify PL is a case-by-case application of the
approach illustrated in figure 4. To reiterate: suppose a mech-
anistic parameter 1/ were introduced into a substitution
model M to give the model My,. Further suppose that the
M versus My, contrast indicated a significant reduction in
deviance, PRD(1/), when fitted to a real alignment. To deter-
mine whether the cause of the balance of this reduction was
real signal or PL, one can first generate alignments in such a
way as to resemble the real alignment as closely as possible,
but without the mechanistic process represented by 1. These
would be fitted to M versus M, to produce a null distribution
for PL(y). Confounding would be inferred to have influenced
the analysis when the PRD(y/) computed from the real align-
ment is no greater than that 95% percentile of the PL(1/)
distribution (cf. fig. 4). This approach requires a method
mimic the real alignment. The Pyvolve software package
(Spielman and Wilke 2015a) provides a way to generating
alignments consistent with a large real alignment. The meth-
ods used in this article (described in Supplementary Material
online) provide an alternative approach for smaller
alignments.

Our results have implications about how the performance
of a CSM should be assesesed. Early efforts to test the reliabil-
ity of CSMs made use of the comparatively simplistic gener-
ating models available at the time under the assumption that
the findings of such analyses would be applicable to real
alignments (Anisimova et al. 2001, 2002; Wong et al. 2004;
Zhang 2004; Yang et al. 2005; Zhang et al. 2005; Yang and dos
Reis 2011; Lu and Guindon 2014). Implicit in this methodol-
ogy is the presupposition that the reliability of a CSM has little
to do with the data. In its original instantiation, for example,
the Yang—Nielsen Branch-Site Model (YN-BSM, Yang and
Nielsen 2002) was evaluated using real data only. It was later
shown via simulation that the original YN-BSM is prone to
falsely infer positive selection under certain testing scenarios
(Zhang 2004). A modified verison of the model was subse-
quently shown to be reliable under the same scenarios
(Zhang et al. 2005). Hence the problem was implicitly as-
sumed to be with the model, with little consideration of
the role the data might have played in the observed pathol-
ogy. The problem with this approach is that it leaves open the
possiblity that the modified YN-BSM might still be unreliable
when fitted to alignments simulated using an alternative,
more realistic, generating scenario.

This possibility was illustrated by our three simulation
studies. In the first study, alignments were generated using
RaMoSS to assess the reliability of the RaMoSS versus
RaMoSSwDT contrast in the absence of any model misspe-
cification. The fixation of double and triple mutations was not
inferred in any of the 100 simulated alignments (bottom row
of table 4). To assess performance in the presence of some
misspecification, alignments in the second simulation study
were generated using M3(k=n), a model that typifies

traditional methods to assess model reliability. The false pos-
tive rate for DT under the RaMoSS versus RaMoSSwDT con-
trast was only 5/100. In the past might, this result might have
been sufficient to conclude that the contrast is a reliable
instrument with which to detect signatures of DT in real
data, similar to the conclusion implicit in Zhang et al.
(2005) about the modified YN-BSM. However, alignments
in the third simulation study were generated to have varia-
tions in selection effects across sites and over time, and var-
iations in site-specific codon frequencies, that mimic the real
mtDNA alignment. Under this generating scenario, RaMoSS
versus RaMoSSwDT falsely detected DT in 41/100 of the 300-
codon alignments and 48/50 of the full-scale alignments.
These results illustrate that pathologies associated with con-
founding might only be realized by fitting a contrast to be
applied to a real data set to alignments that are comparable
with that data. It was shown that the generating model
MutSel-mmtDNA can produce alignments that are similar
in many respects to the real mtDNA alignment used in this
study. However, MutSel-mmtDNA neglects many important
aspects of molecular evolution that might further impact
inference. For example, MutSel-mmtDNA does not include
changes in site-specific fitness coefficients that initiate site-
specific dynamics consistent with adaptive evolution (e.g, a
peak shift, dos Reis 2015), and does not take into account
effects such as epistasis or selection on thermodynamic sta-
bility (Pollock et al. 2012). It might therefore be necessary to
continue to work toward generating models of greater real-
ism by including these and other such processes.

Materials and Methods

The Mutation Model

The model of the mutation process used in this article is
similar to the mechanistic mutation model presented
in Tamuri et al. (2012). The mutation rate from codon i =
i1ipi3 to codon j = jj,j3 was specified as:

K" m, if n=1
M,‘j X OCK”fl—[;ngknj*k if n=2 (9)
ﬁKHtHik#jknj; if n=3

Equation (9) applies to all pairs of codons (i, j) that differ by
n € {1,2, 3} nucleotides, n; of which are transitions. The 7
are position-specific nucleotide frequencies; k is the transi-
tion/transversion rate ratio; « and f determine the rate of
double and triple mutations, respectively. Diagonal elements

M;; were adjusted to make rows sum to 0.

The New Model RaMoSS

RaMoSS is a mixture of two standard CSMs: M3 to account
for static sites (those evolving under one of two rate ratios @,
or m; across the tree) and CLM3 to account for switching
sites (those that change between @y’ and ®,’ randomly in
time). Both M3 and CLM3 are based on substitution rate
matrices constructed from the mutation rate matrix M de-
fined in equation (9) and a nonsynonymous-to-synonymous
substitution rate ratio w:
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Qy = Mo (IS + w’N) (10)

where o represents the entrywise matrix product, s is an
indicator matrix whose (i, j)th element is one if i and j are
synonymous and 0 otherwise, and Iy similarly indicates non-
synonymous codon pairs (the diagonal elements of Q,, are
adjusted to make its rows sum to 0). The row vector of sta-
tionary codon frequencies T = (7, . . ., Ttg) associated with
equation (10) is independent of @ and can be found by
solving TM = 0. Hence, T is determined by the mutation
process alone and is the same for all Q,,. It is convenient to
specify M3 using a compound rate matrix defined as follows:

1 ng 0
Qws = - (11)
r 0 Qw1

The state space for M3 consists of 120 (codon, rate ratio)
pairs. CLM3 can be specified in a similar way, but requires two
compound rate matrices, one for substitutions and the other
for switches between w,’ and w,’ (cf. Guindon et al. 2004):

1 Q(uo’ 0
Qams ==
¥ 0 Qw1 !

0 l“ —p)l (11— Po')’}
+ - (12)
c po/’ —p()/’

By this formulation, a site evolving under CLM3 is allowed
to change either its codon or its rate ratio at any instant, but
never both.

The value of the scaling constant r in equations (11) and
(12) can be specified to make branch length equivalent to the
expected number of single nucleotide substitutions per co-
don. Assuming a common mutation process M, the scaling
factor for any individual rate matrix depends only on @ and
can be specified as follows:

Fo = Y mQu(ij){t + 26 + 345} (13)
(i)

The indicator ¢, is one if i and j differ by n € {1,2,3}
nucleotides and 0 otherwise. The scaling constant r is con-
structed by taking into account both the proportion p, of static
sites evolving under , and the proportion 1 — p, of sites evolv-
ing under o, as well as the expected proportion of time a
switching spends evolving under wy’ (i.e, po’) or @1’ (1 — po'):

r = pms(Porw, + (1= Ppo)re,)
+ (1= pms)(po'Fwy + (1= Po )rey) (14)

The matrix governing the switching process in equation
(12) can be scaled to make ¢ the expected number of
switches per unit branch length. The scaling parameter c is
determined by multiplying the diagonal matrix D whose
entries are equal to the vector of stationary frequenices for
the state pairs under CLM3:

{po'mr, - - po' a0, (1= po' )1, .., (1= po’) o)~ (15)

with the switching matrix in equation (12), and then sum-
ming over all values corresponding to a switch in rate ratio

1486

(i.e, summing over all but the elements on the main diago-
nal). It can be shown that the resulting scaling factor is:

60
c=2Y pd'(1—po)m =2ps'(1—po')  (16)
p

Scaling the switching matrix in this way was first proposed
by Jones et al. (2017). However, their equation for the scaling
parameter ¢ (labeled r, in eq. 22 of that article) contained an
error that made r, = 0. Equation (16) corrects this.

The likelihood for RaMoSS is a weighted average of the
likelihoods for the M3 and CLM3 components, each of
which is computed using the pruning algorithm
(Felsenstein 1981):

Lramoss (Oramoss X, T) = pmsbms (Oms|X, T)
+ (1 — pm3)Lams (Ocms| X, T)

(17)

where X represents the alignment, T the topology of the tree,
and Bramoss a vector that includes the model parameters for
both M3 and CLM3, as well as an additional parameter p;
for the proportion of sites evolving under M3. The posterior
probability of heterotachy at the h™ site (see table 3) can be
computed from the MLE for Opamess using the standard naive
Bayesian approach:

P(switching|x", Oramoss) = (18)

Lams (%" |écuv\3, T)(1—Pws)
Lz (x| Oms, T)Pps + Lams (X"|Ocims, T) (1 — Pps)

where X" is the site pattern.

Model Contrasts

Nested models (a null model vs. an alternative, e.g, MO vs.
MOwDT) can be compared using a log-likelihood ratio test.
The null hypothesis is that the data were generated under the
simpler of the two models (e.g, MO). This is rejected if the log-
likelihood ratio (LLR) for the test is larger than a critical value
determined by the limiting distribution of the log-likelihood
ratio statistic and the level of significance of the test. In this
article, the models M0, M3, CLM3, and RaMoSS were fitted to
real and simulated alignments. Each allows single nucleotide
mutations only (eg, & = f = 0 in eq. 9). The four models
have counterparts that allow double and triple mutations
(eg, « and f§ in eq. 9 are estimated): MOWDT, M3wDT,
CLM3wDT, and RaMoSSwDT. The contrast between M and
MwDT provides a test for DT mutations, where M
€ {M0, M3, CLM3, RaMoSS}. In a similar fashion, the
MO-M3 contrast provides a tests for variation in the rate ratio
across sites; M3-CLM3 provides a test for variations in the rate
ratio over time; and CLM3-RaMoSS provides a test for a com-
bination of static and switching sites in the same alignment
compared with switching sites only. The limiting distribution
of the LLR statistic is often unknown. In such cases, it is
standard practice to use a distribution that is thought to be
more conservative (i.e, less likely to reject the null hypothesis)
than the unknown true distribution.
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Table 6. Critical Values Used for the Log-Likelihood Ratios Tests in
This Article.

Contrast df Theoretical Implemented  Crit. val.
Distribution

M vs. MwDT 2 n/a 3 5.99

MO vs. M3 2 n/a 3 5.99

M3 vs. CLM3 1 0573 +057 05y +05) 2.71

CLM3 vs. RaMoSS 4 n/a 7 9.49

df, the number of extra parameters in the larger model compared with its nested
counterpart.

The distributions used for the tests in this study are listed in
table 6, along with the corresponding critial values for 5% level
of significance. The null hypothesis for all of the M versus
MwDT contrasts places both o = 0 and f§ = 0 on the boundary
of the parameter space. The theoretical limiting distribution is
therefore a mixture of a %2, a x3 and a y3 distribution (Self and
Liang 1987). The mixing weights are unknown however, so we
assumed a 3 distribution to be conservative. The proportion
of sites in the - category under the null for the MO0 versus M3
contrast is p; = 1—po =0, making @, unidentifiable.
Similarly, the proportion of sites evolving with constant rate
ratio under the null for the CLM3 versus RaMoSS contrast is
pms = 0, making o', @;" and p,’ unidentifiable. The theo-
retical limiting distributions for these contrasts are not available
from Self and Liang (1987). We therefore used the conventional
x5 distribution with degrees of freedom (df) equal to the dif-
ference in the number of parameters (table 6). The theoretical
distribution for the M3 versus CLM3 contrast is known to be an
equal mixture of a y5 and a 3 (Self and Liang 1987).

Constructing PDFs for Scaled Selection Coefficients

The probability density functions (PDFs) for the scaled selec-
tion coefficients depicted in Figure 2 in Supplementary
Material online and used to compute the values in Table 5
were approximated by discrete probability mass functions
(PMFs). This section explains how the PMFs were constructed
(cf, Tamuri et al. 2014). We started with a fixed set of n = 10°
vectors of site-specific fitness coefficients from which a fixed
setS = {sf] }h_, of scaled selection coefficients was produced.
The PMF for all mutations was then constructed as follows:

(1) pg = n'M; was computed for each 53; pg is propor-
tional to the long-run probability that a mutation will
occur at site h and correspond to i — j with associated
scaled selection coefficient s/

(2) The elements of S were then partitioned into 50 bins.
The left-most bin was the interval (—oo, —10) and the
right-most bin was (10, +00). The remaining bins be-
tween *10 were constructed with bin width ~0.4.

(3) Each bin was assignedasumc, =3/, pfl?é(sz? € the
b bin) where 6(55 € the b" bin) is one if sj isin
the b™ bin and 0 otherwise. “

(4) Each ¢, was then divided by > cp.

. b=1 . .
(5) The resulting values were plotted against the bin cen-
ters, except for the end points ¢; and cs, for which the
abscissa was —10 and +-10, respectively.

The PMF for all substitutions was constructed by first set-

ting pf} = nf’Af}, where Af? is the site-specific substitution rate

matrix, followed by the same steps 2 to 5. The PMFs for
nonsynonymous mutations and nonsynonymous substitu-
tions were similarly constructed using sf} and pg correspond-
ing to nonsynonymous pairs of codons i and j. The resulting
PMFs approximate continuous distributions of scaled selec-
tion coefficients s, and can be used to approximate integrals.
For instance, p(—2 < s; < 2) in the first row of table 5 is
approximated by the sum of ¢, correponding to bin centers
between —2 and 2, and gives the expected proportion of
mutations across sites and over time that would have a se-
lection coefficient between —2 and 2.
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