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This unit provides protocols for using the CODEML program from the PAML
package to make inferences about episodic natural selection in protein-coding
sequences. The protocols cover inference tasks such as maximum likelihood
estimation of selection intensity, testing the hypothesis of episodic positive
selection, and identifying sites with a history of episodic evolution. We provide
protocols for using the rich set of models implemented in CODEML to assess
robustness, and for using bootstrapping to assess if the requirements for reliable
statistical inference have been met. An example dataset is used to illustrate how
the protocols are used with real protein-coding sequences. The workflow of this
design, through automation, is readily extendable to a larger-scale evolutionary
survey. C© 2016 by John Wiley & Sons, Inc.
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INTRODUCTION

Understanding the biological significance of genetic and genomic variation requires
an understanding of the evolutionary processes that are responsible for its origin and
persistence. For example, many changes are expected to have little or no effect on protein
function, and a process of neutral drift best explains those changes. Alternatively, other
DNA changes will have had a positive effect on a protein’s function, and will have been
subject to Darwinian selection. A sample of protein-coding DNA sequences permits an
investigation of these evolutionary processes, thereby providing a means of discovering
the functionally important substitutions that have occurred within the encoded protein.
One of the most powerful approaches is to use rigorous statistical techniques to model
evolution at the level of the codon. Codon models permit separate estimation of both
the synonymous (no change in the encoded amino acid) and nonsynonymous (change
the encoded amino acid) rates, with the former serving as an estimate of the neutral rate
of evolution for the encoded protein. An episode of functional divergence can then be
identified as a period when the nonsynonymous rate was significantly greater than the
neutral rate.
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Markov models for codon evolution specify a specific parameterization of the process of
substitution from one codon state to another within a protein-coding gene. These models
offer many advantages, but foremost among them is explicit parameterization of the
nonsynonymous to synonymous (neutral) rate ratio (ω = dN/dS). Estimates of this ratio
for a protein-coding gene provide valuable measures of the intensity of natural selection
acting at the level of its protein product (Yang and Bielawski, 2000; Anisimova and
Liberles, 2012). When purifying (negative) selection dominates the evolution of amino
acids, selection will prevent fixation of deleterious nonsynonymous mutations, leading
to ω < 1. If nonsynonymous substitutions were free from selection (i.e., neutrality
at the level of the protein product) the rate of nonsynonymous substitution would be
equal to the rate of synonymous substitution, with ω � 1. In the rare case that positive
selection promoted the fixation of a series of beneficial substitutions (e.g., movement of
a population to a new fitness peak in response to a change in environment or emergence
of a new enzyme activity), the nonsynonymous rate can exceed the synonymous rate,
leading to ω > 1. Because the latter scenario represents an episodic (short-lived) change
in the intensity of selection pressure, codon models that average ω over long periods of
evolutionary history have low power to detect such cases of adaptive evolution (Yang and
Dos Reis, 2011). However, episodic changes can be detected using codon models that
permit the intensity of selection pressure to vary both over sites and evolutionary history
(e.g., Yang and Nielsen, 2002; Zhang et al., 2005).

Phylogenetic Analysis by Maximum Likelihood (PAML) is a package of individual pro-
grams for phylogeny-based analysis of the process of molecular evolution (Yang, 2007),
with one program, CODEML, for detecting purifying (ω < 1) or positive selection
(ω > 1) at sites within a set of related proteins (site selection) or along branches of an
evolutionary tree (e.g., speciation events). The strength of the package is its rich set of
evolutionary models. The models serve as the basis of parameter estimation via maxi-
mum likelihood (ML), a wide variety of hypothesis tests, ancestral state reconstruction,
estimation of divergence times, detection of positive Darwinian selection at the molecular
level, and many other analyses. Models are available for DNA-, codon- and protein-level
data, and the codon models implemented in the program CODEML permit the intensity
of selection to vary over macro-evolutionary time (branch-models; e.g., Yang, 1998),
over sites within a gene (sites-models; e.g., Yang et al., 2000), and over both sites and
time (branch-site and clade-site models; e.g., Bielawski and Yang, 2004; Zhang et al.,
2005). Branch-site Model A (Zhang et al., 2005) will be employed exclusively within this
unit, as it is a model for episodic changes in selection intensity and it serves as the basis
of a formal likelihood ratio test (LRT) for an episode of positive Darwinian selection
(Zhang et al., 2005; Yang and Dos Reis, 2011).

This unit describes the use of branch-site codon models, as implemented in CODEML,
to infer when the intensity of positive (or negative) selection has differed from the
average across the tree. Branch-site codon models formalize several categories of the
evolutionary process (see site classes in Fig. 6.15.1A), but permit uncertainty about
which sites have experienced a particular process by treating them as the categories of
a statistical distribution (Fig. 6.15.1B). The site classes fall into two broad evolutionary
regimes: constant and episodic selection (Fig. 6.15.1A). The constant regime comprises
two site classes, where the same ω parameter is used within a site class for all branches of
a phylogeny. The intensity of selection is permitted to differ among those classes by using
a different ω for each one (ω0 and ω1). Within the episodic regime, sites will experience
unique selection intensity along a particular branch, or branches, of a tree. Such branches
are referred to as “foreground” (FG) branches, and they employ an independent parameter
for the selection intensity unique to the FG (ωFG). Note that selection intensity for all
other branches is modeled using either ω0 or ω1; thus, those two parameters are shared
among the constant and episodic regimes. Branch-site Model A is obtained by taking the
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Figure 6.15.1 (legend appears on next page)

ω parameters defined in Figure 6.15.1A and imposing some restrictions on them (see
two forms of Model A in Fig. 6.15.1C). For the site classes within the constant regime,
one is restricted to purifying selection (ω0 < 1) and the other is set to neutral evolution
(ω1 = 1). For the two site classes of the episodic regime, one specifies episodic evolution
(ωFG) under a background of purifying selection (ω0 < 1) and the other specifies episodic
evolution (ωFG) under a background of selectively neutral evolution (ω1 = 1).
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Branch-site models require the user to specify in which branches the episodic changes
in selection pressure have occurred; consequently, among-branch ω variation is a fixed
effect within Model A. This is in contrast to among-site ω variability, which is treated
as a random effect (Fig. 6.15.1B). The model is therefore ideally suited to testing hy-
potheses about altered selection during any biological event that can be specified as a
unique branch, or set of branches (e.g., a gene duplication, lateral gene transfer, or niche
colonization event). To carry out an LRT for episodic positive selection, the user specifies
the biological event as the foreground (FG) branch in Model A, and fits the data to two
forms of this model (Fig. 6.15.1C). The null hypothesis (no positive selection along the
FG branch) is specified by setting ωFG = 1. The alternative hypothesis (positive selection
along the FG branch) is specified by permitting ωFG to have a value >1, with the specific
value of ωFG estimated from the data via maximum likelihood. The null hypothesis is
rejected when the likelihood of the data is significantly higher under the alternative form
of Model A (Zhang et al., 2005; Yang and Dos Reis, 2011).

In this unit we present three basic protocols and five support protocols, which are intended
to fit within a broader experimental design (Fig. 6.15.2). Although this design is focused
on inferring episodic changes in natural selection using codon Model A, it is generally
applicable to any codon-model based investigation of natural selection. Substituting
another branch-site (Yang and Nielsen, 2002; Zhang et al., 2005), or clade-site model
(Bielawski and Yang, 2004; Zhang et al., 2005) within the design is straightforward.
Moreover, it is also easy to add further quality control and reliability analyses depending
on the particular needs of the research question or type of data. The workflow of this
design, through automation, is readily extendable to a larger scale evolutionary survey.
We employ the Ceacam gene from primates as an example dataset for each of the basic
protocols. Ceacam is well known for its expression on activated T cells and also for its
involvement in T cell inhibition (Gray-Owen and Blumberg, 2006; Chen et al., 2012). The
primate dataset is well sampled relative to the requirements of branch-site codon models.
As the purpose of Basic Protocol 2 is to identify problematic cases, we also provide
a second dataset, primate NR1D1, in which the requirements for inference have not
been met (Baker et al., 2016). NR1D1 is a member of the nuclear receptor superfamily
that modulates the expression of core clock proteins (Bugge et al., 2012), and has
been shown to act as a regulator of metabolic genes (Zhang et al., 2015). Using Basic

Figure 6.15.1 (image appears on previous page) (A). Graphical representation of how the ω

parameters of a branch-site codon model differ among branches of a phylogenetic tree and
among different site classes. Two site classes (0 and 1) specify constant selection intensity. This is
achieved by specifying the same ω parameters for all branches of the tree within a given site class.
Sites are permitted to have different levels of selection intensity through site classes that employ
different ω parameters (ω0 and ω1). Two site classes (2a and 2b) specify episodic changes in
selection intensity. This is achieved by specifying a unique ω parameter for a branch, or branches,
where the intensity of selection changed. This branch is referred to as the “foreground” branch (FG),
and the selection intensity at such a branch is modeled via the ωFG parameter. The FG branch is
specified by the user, and is treated as a fixed effect within the model. Note that selection intensity
for all other branches is modeled using ω0 and ω1; thus, these two parameters are shared among
all four of the site classes of the model. (B). The unconstrained discrete distribution for the four site
classes of this branch-site codon model. The model assumes that the evolutionary process varies
among sites, but does not assume that the true process is known for each site. To accommodate
this uncertainty, variability among sites is treated as a random effect and modeled according to this
distribution. The pi parameters of the distribution specify the probability that a site within the data
evolved under each of the four site classes. The values of these parameters are estimated from a
given dataset via maximum likelihood. (C) Model A is obtained by placing restriction on the values
that the ω parameters can take. All versions of Model A restrict site class 0 to purifying selection
(ω0 < 1) and set site class 1 to neutral evolution (ω1 = 1). Model A serves as the basis for a LRT,
and therefore has two forms: null and alternative. In the null form, ωFG is fixed to 1 (no positive
section). In the alternative form, ωFG is permitted to be >1. As these models are nested, they
comprise a likelihood ratio test for an episode of positive selection along the foreground branch.
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Figure 6.15.2 (legend appears on next page)
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Protocol 2 to contrast these two genes will provide users of codon models with valuable
experience in assessing the reliability of results obtained from any kind of complex codon
models.

BASIC
PROTOCOL 1

MAXIMUM LIKELIHOOD ESTIMATION OF EPISODIC SELECTION
INTENSITY

The first step in the inference process is to fit a codon model to the dataset for the
purpose of estimating its ω distribution. Here, because the target of inference is the
presence of sites where an episode of altered selection occurred, this protocol is based
on a branch-site codon model. Further, branch-site codon Model A (Fig. 6.15.1) is
used because it will serve as the basis for an explicit likelihood ratio test for positive
selection in Basic Protocol 3. The example dataset for this protocol is a set of 11 primate
Ceacam sequences. Ceacam encodes a cell adhesion protein that plays a role in both
tissue differentiation and modulation of immune responses. The sequence divergence
represented by the Ceacam dataset is appropriate to codon models. The suitability of
Ceacam is evaluated in Basic Protocol 2, and further discussed within the section that
presents guidelines for interpreting the results.

Necessary Resources

Hardware

CODEML or CODEML_SBA can be compiled to run on computers running
Windows, OS X, FreeBSD, GNU/Linux, and other Unix-like operating systems.

Software

Users can use either the CODEML program of the PAML software package, or the
variant that permits bootstrapping, called CODEML_SBA. The results will be
equivalent. See Support Protocols 1 and 2 for further details about how to
download and install these programs.

Files

Fitting a model to a dataset requires a minimum of three files: (i) a tree file, (ii) a
sequence alignment file in standard PAML format, and (iii) a program
configuration file (referred to as a control file). The tree file and sequence file for
the example dataset are provided on-line at http://www.currentprotocols.com/
protocol/BI0615.

EvoWorks: https://bitbucket.org/EvoWorks/protocol-inference-of-episodic-
selection/downloads

1. Obtain and install CODEML or CODEML_SBA (see Support Protocols 1 and 2)

2. Create an analytical directory to hold both the input and result files for a single run.

It is good practice to use directories to organize and document your results. Having a
separate directory for each analysis (hereafter “analytical directory”) avoids accidently
overwriting your results files. Keeping all input and results together provides a convenient
way to ensure reproducibility, as existing input files can be re-run to reproduce results.

Figure 6.15.2 (image appears on previous page) Overview of an experimental design for compu-
tational inference of episodic changes in the intensity of natural selection. The workflow illustrates
that many stages of data processing, quality control, and analysis are required to obtain a reli-
able outcome. The first four stages of the workflow are concerned with rigorous assessment of
sequence and alignment quality, and the inference of a phylogenetic tree for those sequences.
Although those stages are not covered in this unit, other units are relevant to those tasks. Basic
Protocols 1 to 3 and Support Protocol 4 of this unit cover the next four stages of analyses. The
last stage is intended to represent a suite of robustness analyses, and suggestions are provided
in the main text for how to use alternative software packages to assess the robustness of the
results.
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Keeping a copy of the control file is essential, as it serves as a direct record of how the
software was configured for each analysis.

3. Obtain the sequence alignment file and tree file required for the desired analysis, and
copy them to your analytical directory.

Users will need to prepare their own sequence alignments (e.g., UNIT 3.8; Notredame,
2010) and infer their own phylogenetic trees [see UNIT 6.1 (Page, 2003), UNIT 6.3 (Desper
and Gascuel, 2006), UNIT 6.4 (Wilgenbusch and Swofford, 2003), and UNIT 6.6 (Schmidt
and von Haeseler, 2007)] for future analyses. The example dataset files for this protocol
are:

Alignment file: Ceacam_seq.txt

Tree file: Ceacam_tree.txt

These files are available at http://www.currentprotocols.com/protocol/BI0615. Open and
familiarize yourself with the contents of both files. This is always good practice, as it
allows you to visually confirm the contents of each file within an analytical directory.
Users should consult the PAML manual (pamlDOC.pdf) from the PAML distribution for
additional information about acceptable formats.

4. Label a branch, or branches, to be treated as foreground in branch-site Model A.

Branch-site codon models require a user to specify exactly which branches should have a
unique ω parameter in the model (i.e., foreground branches).

A tree file is used to specify both the tree topology and foreground branches for the model.
The tree is represented within that file using the “Newick format” (Felsenstein, 2004).
Typically, the tree topology will be obtained from a phylogenetic analysis of the data in
hand (e.g., see UNIT 6.6; Schmidt and von Haeseler, 2007). To label a foreground branch,
the user must annotate the Newick-formatted tree. The annotation format is described in
the PAML manual. A method of labeling the branches of a Newick tree is provided in
Support Protocol 3.

The tree file provided for the example dataset (Ceacam_tree.txt) is pre-labeled at
nodes 1 and 16 (as numbered by the program DENDROCYPHER). As this is a rooted tree,
these labels define the branch that separates the Old World and New World monkeys. With
this labeled tree, Model A can be used to investigate the hypothesis that some sites in the
Ceacam gene evolved by positive Darwinian selection during the divergence of the Old
World and New World monkeys.

5. Make a copy of the default configuration file (codeml.ctl) from the PAML dis-
tribution and place the copy within your analytical directory.

Open this file and familiarize yourself with its contents. Users should consult the PAML
manual for detailed descriptions of all program variables.

6. Open codeml.ctl in a plain text editor and edit the following lines within this
file:

seqfile = Ceacam_seq.txt * sequence data filename

treefile = Ceacam_tree.txt * tree structure file name

outfile = Ceacam_ModelA.out * main result file name

seqtype = 1 * 1:codons; 2:AAs; 3:codons-->AAs

model = 2 * models for codons ...

NSsites = 2 * 0:one w;1:neutral;2:selection...

cleandata = 1 * remove sites with ambiguity ...
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Figure 6.15.3 Annotated portion of the main output of CODEML for Model A. The output is
abridged, with a considerable amount removed to improve the presentation. The output that has
been excluded can be valuable, and users of CODEML are encouraged to explore all the output.
The abridged output has been annotated to help users to locate the likelihood score for the data,
the maximum likelihood estimate of the branch lengths, and the parameters of the ω distribution
for Model A.

Many other types of codon models can be specified via this file, and users should consult
the PAML manual for those details.

An asterisk (*) is used to indicate a comment, with any subsequent text ignored. Placing
an asterisk at the start of a line causes the program to completely skip the configuration
variable on that line.

7. Configure other aspects of the CODEML run within the control file.

Some of the variables within the control file are usually safe to ignore. However, others
that are routinely altered are described below.

The CODEML program is able to accommodate any of the alternative genetic codes
represented by the code tables within GENBANK. For example, using icode=0 specifies
the so-called universal genetic code.

For model A, setting fix_omega=0 ensures that the parameters of the ω distribution
will be estimated via maximum likelihood. Further, setting fix_kappa=0 ensures that
the transition/transversion ratio will be estimated via maximum likelihood.

Ideally, branch lengths should be jointly optimized with the other model parameters
(method=0 within the control file). However, for larger datasets, joint optimization can
make program runtimes very long. Faster results can be obtained by setting method=1,
which causes the program to use a faster optimization algorithm that updates branches
one at a time. Yet another alternative is to obtain branch lengths from another source, such
as ML under a simpler model, and then fix them for the branch-site analysis. To do this,
the desired branch lengths must be added to the tree file, and fix_blength=2 must be
set in the control file. The latter options are less desirable, and are discouraged unless a
joint optimization is prohibitive.
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IMPORTANT NOTE: This unit is not a substitute for the PAML manual. Users must read
the PAML manual to ensure that they have set their program variables correctly.

IMPORTANT NOTE: It is good practice to use tree file, sequence file, and result file names
that are highly informative about their contents. These can be set within the control file
using the seqfile= , outfile=, and treefile= variables. The program produces
a variety of files with fixed names (e.g., rates, rst, rub). You should not use these
names for your own files, as they will be overwritten. Users should run the program with
default settings once and familiarize themselves with the output of the program.

8. Open a terminal prompt and navigate within your file system to your analytical
directory. Check that the directory contains the required files, and that the control file
is appropriate.

9. Run CODEML or CODEML_SBA and examine results.

A variety of files will be produced. For this model, you will want to open and examine
the contents of the main results file (Ceacam_ModelA.out if you used the file name
suggested for the example dataset) and the rst file. Both are plain text files. These files
contain a large amount of information. Figure 6.15.3 provides a portion of results output
by CODEML, with annotations, to help identify particularly useful output such as the
likelihood score, the estimated values of the ω distribution, and a Newick tree with the
estimated branch lengths.

BASIC
PROTOCOL 2

USING THE BOOTSTRAP TO ASSESS IF THE REQUIREMENTS
FOR INFERENCE HAVE BEEN MET

ML estimates (MLEs) of model parameters can provide insight into the evolutionary pro-
cess, including the influence of purifying or positive selection at sites, or along branches.
However, the estimates often have very large errors and they can sometimes be unstable.
Instability refers to parameter estimates that have considerable mass associated with di-
vergent values. Rather than simply assuming that the ML estimates have converged to a
representative value, we can use the non-parametric bootstrap to verify this assumption.
When parameter estimates are well behaved (i.e., when regularity conditions hold), the
parameter estimates should have unimodal and symmetric distributions. When regularity
conditions are violated, parameter estimates will be non-Gaussian and over-dispersed.
Without regularity conditions, the desirable priorities of consistency and efficiency cannot
be assumed for ML.

Bootstrapping is a procedure of “sampling with replacement.” In this context, columns
within a multi-sequence alignment are sampled at random to create many new align-
ments with different distributions of site patterns than the original. The program
CODEML_SBA is used to bootstrap an original sequence alignment (select alignment
columns at random with replacement) and to infer an ω distribution from each new
alignment. These bootstrap distributions should have good properties when regularity
conditions have been met. For this protocol, we provide two example datasets (Ceacam
and NR1D1) where the sequences were sampled exclusively from primates. Regularity
conditions hold for one dataset, Ceacam, and bootstrapping reveals that the MLEs are
well behaved. Regularity conditions are not met for the other dataset, NR1D1, leading to
bimodal distributions for both p0 and ω.

Necessary Resources

Hardware

CODEML_SBA can be compiled to run on computers running Windows, OS X,
FreeBSD, GNU/Linux, and other Unix-like operating systems
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Software

See Support Protocol 2 for details about how to download and install
CODEML_SBA

Files

Bootstrapping requires: (i) a tree file in standard Newick format, (ii) a sequence
alignment file in standard PAML format, and (iii) a control file. The tree files
and alignment files for two example datasets are provided online (see Basic
Protocol 1). The required configuration file for CODEML_SBA is included in
the software download.

1. Obtain and install CODEML_SBA (see Support Protocol 2).

2. Create a new analytical directory to hold the input and the result files for a single
run.

3. Obtain the sequence alignment file and tree file required for the desired analysis and
copy them to your analytical directory.

The files for the first example dataset are:

Alignment file: Ceacam_seq.txt

Tree file: Ceacam_tree.txt

These files are available at http://www.currentprotocols.com/protocol/BI0615.

4. Make a copy of the default configuration file (codeml.ctl) for CODMEL_SBA
and place the copy within the same analytical directory.

5. Open codeml.ctl in a plain text editor and edit the lines within this file as follows:

seqfile = Ceacam_seq.txt * contains sequence alignment

* seqfile = boot.txt * filename for bootstrap data

treefile = Ceacam_tree.txt * tree structure file name

bootstrap = 100 * N bootstrap alignments

* ndata = 100 * number of datasets

cleandata = 1 * remove sites with ambiguity ...

* sba = 1 * smoothed bootstrap aggregation

These settings are necessary for the first of a two-step procedure. The objective of
the first step is to generate 100 bootstrap samples based on the original alignment
(Ceacam_seq.txt).

IMPORTANT NOTE: An asterisk (*) is used to indicate a comment, with any subsequent
text ignored. The asterisk at the start of three of the above lines (e.g., * sba = 1) is
critical to proper program configuration in this step. Note that there are no asterisks at
the start of the other three lines (this is also critical).

6. Run CODEML_SBA to obtain the bootstrap samples.

This step of the procedure is very fast, and will produce a single file called boot.txt.
This file will contain 100 sequence alignments, each obtained by bootstrap sampling of
the columns within the original sequence alignment.

7. Open codeml.ctl in a plain text editor and edit the following lines within this
file:
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Figure 6.15.4 Annotated portion of results from the sba.params file. The file contains the
maximum likelihood estimates of model parameters for each bootstrap dataset. The annotations
help identify the parameters of the ω distribution under model A: p0 , p1 , ω0 and ωFG. Note that p2

is not printed to the file because it is equal to 1- p0 + p1, and ω1 is not printed to the file because
it is fixed at 1.0 in this model.

* seqfile = Ceacam_seq.txt * contains sequence alignment

seqfile = boot.txt * filename for bootstrap data

treefile = Ceacam_tree.txt * tree structure file name

ndata = 100 * number of datasets

* bootstrap = 100 * N bootstrap alignments

cleandata = 1 * remove sites with ambiguity ...

sba = 1 * smoothed bootstrap aggregation

Do not forget that you must also set the program variables required for the codon model
you wish to assess. As the focus of this protocol is Model A, the following program
variables must be set as follows:

model = 2 * models for codons ...
NSsites = 2 * 0:one w;1:neutral;2:selection...

8. Run CODEML_SBA a second time to obtain MLEs for bootstrap datasets.

This step of the procedure is much slower, and may take several hours (depending on the
computer).

All the estimated parameters (including branch lengths) for each bootstrap dataset are
provided as a single line in a file called sba.params. If bootstrap = 100 is
specified, then sba.params should contain 100 lines of parameter values.

The order of parameters in each line withinsba.params begins with the branch lengths
and ends with the parameters of the ω distribution. For branch-site codon Model A, the
ω distribution is given by the last 4 values in each row. Those parameters are: p0, p1 ,
ω0, and ωFG. Figure 6.15.4 provides a portion of results from an sba.params file, with
annotations to help identify particularly useful output.

9. Plot the distributions for the ω parameters and the mixture proportions (p). Inspect
these distributions for signs that the required statistical regularity conditions have
been met.

These distributions should be approximately unimodal and bell-shaped. A statistical
software package (e.g., R) can be used to plot the distributions.

IMPORTANT NOTE: Truncation of an otherwise bell-shaped distribution due to a
restriction of the parameter values is acceptable (i.e., p parameters cannot be less than 0
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and ωFG cannot be less than 1). A long right tail for the ωFG distribution is also acceptable,
as it is often difficult to estimate larger values, even when regularity conditions have been
met.

IMPORTANT NOTE: Instabilities in the parameter estimates are indicated by strongly
bimodal distributions for the p parameters of the ω distribution. Such bootstrap distribu-
tions indicate that the conditions for reliable estimation of the ω distribution, as well as
inference under the LRT, have not been met.

10. Obtain the sequence alignment file and tree file required for the second example
analysis and copy them to a different analytical directory

Alignment file: NR1D1_seqfile.txt

Tree file: NR1D1_treefile.txt

These files are available at http://www.currentprotocols.com/protocol/BI0615. Open each
file and familiarize yourself with its contents.

11. Repeat steps 3 through 9. Compare the bootstrap distribution for each of the four
free parameters of the Model A ω distribution (p0, p1 , ω0 and ωFG) between the
two example datasets.

BASIC
PROTOCOL 3

TESTING THE HYPOTHESIS OF EPISODIC EVOLUTION AND MAKING
SITE-SPECIFIC INFERENCES

Hypothesis testing via the LRT is reliable when regularity conditions are met (see Basic
Protocol 2). In this protocol, branch-site codon Model A (Fig. 6.15.1) serves as the
basis to formally test the hypothesis that sites evolved under positive selection along
the foreground branch of the Ceacam gene tree. The LRT is based on comparing the
likelihood under Model A restricted such that ωFG = 1 (Fig. 6.15.1; null model) to
Model A permitted to have ωFG > 1 (Fig. 6.15.1; alternative model). When this LRT
is significant, the MLEs from Model A with ωFG > 1 are input to Bayes’ formula for
the purpose of computing the posterior probability that each site could have evolved
with ωFG > 1. CODEML employs a method called Bayes Empirical Bayes (BEB) to
accommodate potentially large estimation errors in the parameters of Model A.

Necessary Resources

Hardware

CODEML or CODEML_SBA can be compiled to run on computers running
Windows, OS X, FreeBSD, GNU/Linux, and other Unix-like operating systems

Software

Users can choose either the CODEML or CODEML_SBA; the results will be
equivalent. See Support Protocols 1 and 2 for further details about how to
download and install these programs.

Files

The protocol requires: (i) a tree file in standard Newick format, (ii) a sequence
alignment file in standard PAML format, and (iii) a control file. The tree file and
alignment file for the sample data are provided online (see Basic Protocol 1).
The required control file is included in the CODEML and CODEML_SBA
software download.

Prepare files

1. Obtain and install CODEML or CODEML_SBA (see Support Protocols 1 and 2).

2. Create an analytical directory to hold both the input files and the result files.Inference of
Episodic Selection
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3. Obtain the sequence alignment file and tree file required for the desired analysis,
and copy them to your analytical directory.

The example datasets files for this protocol are:

Alignment file: Ceacam_seq.txt

Tree file: Ceacam_tree.txt

These files are available at http://www.currentprotocols.com/protocol/BI0615.

4. Make two copies of the default configuration file (codeml.ctl) and place both
of them within the same analytical directory.

Name the alternative copies of codeml.ctl as follows:

null_codeml.ctl
alt_codeml.ctl

The LRT requires comparing results obtained from a constrained version of codon Model
A (ωFG = 1) to those obtained from a less constrained version of that model (ωFG >

1). The differences in the analyses are achieved by changing settings in the control file.
Keeping two versions of codeml.ctl within this analytical directory (as opposed to
changing and overwriting a single copy of this file) maintains a direct record of how the
software was configured for each analysis.

5. Open null_codeml.ctl in a plain text editor and edit the following lines within
this file:

seqfile = Ceacam_seq.txt * sequence data filename

treefile = Ceacam_tree.txt * tree structure file name

outfile = Ceacam_MA_Null.out * main result file name

seqtype = 1 * 1:codons; 2:AAs; 3:codons-->AAs

model = 2 * models for codons ...

NSsites = 2 * 0:one w;1:neutral;2:selection...

fix_omega = 1 * 1: omega_1 fixed, 0: estimate

omega = 1 * initial or fixed omega, for ...

cleandata = 1 * remove sites with ambiguity ...

6. Open a terminal prompt and navigate within your file system to your analytical
directory. Check that this directory contains the required files.

7. Run CODEML with the first control file (null_codeml.ctl).

Because this control file does not use the default name, you must direct CODEML to use
the alternatively named file by providing its name at the command line when the program
is executed. For this example:

codeml null_codeml.ctl

8. Open the main result file and inspect the contents.

Figure 6.15.3 provides annotated program output for Model A. Note that Figure 6.15.3
shows results obtained from the alternative form of Model A; results under the null form
of the model will be different.

9. Rename the rst file to rst_MA_null.txt.

IMPORTANT NOTE: CODEML writes results to files with names such aslnf,rates,
rst, and rub. These files are overwritten each time the program is run. If you want to
preserve any results within these files they must be re-named.
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10. Open alt_codeml.ctl in a plain text editor and edit the following lines within
this file:

seqfile = Ceacam_seq.txt * sequence data filename

treefile = Ceacam_tree.txt * tree structure file name

outfile = Ceacam_MA_alt.out * main result file name

seqtype = 1 * 1:codons; 2:AAs; 3:codons-->AAs

model = 2 * models for codons ...

NSsites = 2 * 0:one w;1:neutral;2:selection...

fix_omega = 0 * 1: omega_1 fixed, 0: estimate

omega = 1 * initial or fixed omega, for ...

cleandata = 1 * remove sites with ambiguity ...

11. Open a terminal prompt and navigate within your file system to your analytical
directory. Check that this directory contains the required files.

12. Run CODEML with the second control file (alt_codeml.ctl).

Because this control file does not use the default name, you must direct CODEML to use
the alternative control file by providing its name at the command line when the program
is executed. For this example:

codeml alt_codeml.ctl

13. Open the main result file and inspect the contents.

14. Rename the rst file to rst_MA_alt.txt.

15. Inspect and compare the MLEs of the model parameters obtained under both the
null and alternative versions of Model A.

It is good practice to also review the estimates of other model parameters, and the
empirical estimates of the codon frequencies.

In this case it is important to inspect the branch lengths, looking for any implausibly large
estimates, or for a very large proportion of branches with very small, or zero, length.

Formal testing of the hypothesis of sites evolving under positive selection along the
foreground branch

16. Obtain the log likelihood scores for both Null Model A (ωFG = 1) and Alternative
Model A (ωFG > 1). See annotations within Figure 6.15.3 to help identify the
likelihood score within the main result file. Multiply the absolute difference in log
likelihood scores by 2, and compare to a χ2 distribution with 1 degree of freedom.
This constitutes a LRT for an episode of positive selection along the FG branch at
some sites within the data.

17. Optional: To check if the result of the LRT carried out in step 16 is sensitive to the
assumed model, repeat this protocol under several alternate strategies for modeling
codon frequencies (see Support Protocol 4).

Posterior identification of which sites evolved under positive selection along the
foreground branch

18. Open the rst file for alternative Model A (rst_MA_alt.txt), identify the set
of Bayes Empirical Bayes posterior probabilities (BEB-PPs) for each site, and copy
those to a new plain text file, or into a spreadsheet.

Figure 6.15.5 provides a portion of the rst file, with annotations, to help identify the
results relevant to BEB-PPs.
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Figure 6.15.5 Annotated portion of the supplementary output of CODEML printed to the rst
file. This file contains site-wise calculation of the NEB- and BEB-derived posterior probabilities of
each evolutionary regime (site class) within Model A. As BEB is usually preferable to NEB (when
both are available), only the BEB portion of the output is presented.

Figure 6.15.6 Plot of the posterior probability of purifying selection (ω0 < 1), neutral evolution
(ω1 = 1), and positive selection in the foreground branch (ωFG > 1) for half of the sites in the
primate Ceacam dataset. Results are plotted only for the second half of the data to improve the
interpretability of the plot, and because those sites with high posterior probability of ωFG > 1 are
located in this region of Ceacam. The posterior probabilities are computed using the BEB method
under codon Model A, with the values at each site summing to 1.0.
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The BEB-PPs for each site include the posterior probability that it evolved under positive
selection along the FG branch (i.e., ωFG > 1). Inference of such sites should be based
on a threshold chosen by the user. Typically, conservative thresholds are adopted (e.g.,
0.90, 0.95, or 0.99).

For the Ceacam dataset, there are 6 sites with BEB-PP > 0.90, and 5 > 0.95. Similar
results are obtained under the Naı̈ve empirical Bayes (NEB) method; when both NEB
and BEB are available, BEB is recommended (Yang et al., 2005).

In addition to identifying sites having the highest probability of positive selection, these
data can be imported into plotting software to produce a graphical summary of the
distribution of selection regimes among sites. Such a plot is shown for half of the Ceacam
gene in Figure 6.15.6.

19. Optional: Use the results obtained under alternative codon frequency models
(Support Protocol 4) to check if BEB-based site identification is sensitive to the
assumed model.

SUPPORT
PROTOCOL 1

OBTAIN AND INSTALL PAML

This protocol describes how to obtain and install the PAML package of programs for
Windows, OS X, FreeBSD, GNU/Linux, and other Unix-like operating systems. The
PAML package includes the program CODEML.

Necessary Resources

Hardware

Any system with an Internet connection and a Web browser

NOTE: The protocols in this unit are for the command-line version of the PAML package.
Do not download PAML-X, which employs a graphical user interface. Versions of PAML-
X for OS X and Linux have not been comprehensively tested.

For Windows

1a. Download the latest version of the PAML software package for Windows from the
PAML Web site: http://abacus.gene.ucl.ac.uk/software/paml.html#download.

The package is distributed as an archive. The archive will have the name paml*.tgz,
where the * represents the current version number.

2a. Unpack the archive into a local folder.

3a. Pre-compiled Windows executable files are provided within paml*\bin\. Place
the executables in a directory that is included in your search path.

For OS X

1b. Download the latest version of PAML for OS X from: http://abacus.gene.ucl
.ac.uk/software/paml.html#download.

The archive named paml*.macosx.tgz contains pre-compiled OS X executable files
within paml*/bin/.

2b. Unpack the archive into a local folder. Move the executables to a directory that is
included in your search path, or add paml*/bin/to your search path.

For FreeBSD

1c. Packages can be installed on FreeBSD using the binary package management tool
(pkg). Use the following command to install PAML:

pkg install paml
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For GNU/Linux

1d. Some GNU/Linux systems maintain a PAML package that is easy to install. For
example, the Advanced Package Tool (APT) can be used to install executables on
Debian-based GNU/Linux systems

Use the following command to install PAML via apt-get:

apt-get install paml

The package can sometimes lag behind the latest version, and other GNU/Linux systems
do not offer a PAML package. In those cases, PAML should be installed from source (see
steps 1e to 4e, below)

Installation from source for OS X, FreeBSD, GNU/Linux, and other Unix-like operating
systems

1e. Download the latest version of the PAML software package from the PAML Web
site: http://abacus.gene.ucl.ac.uk/software/paml.html#download

The package is distributed as an archive. The archive will have the name
paml*.tar.gz, where the * represents the current version number.

2e. Delete the Windows executable files within paml*/bin/.

3e. Navigate within your file system to thepaml*/src/folder (this is where the source
files are located). Use the following command to compile the programs:

make -f Makefile

If the make command fails, you might have to edit the Makefile located within the
paml*/src/folder. Additional information about compiling the programs is provided
in the PAML manual, and online at the PAML Web site. The GNU make command on
FreeBSD is gmake. It must be installed with pkg install gmake.

4e. If you have a folder for local programs inside your home account, then you
can move the executable files there. Otherwise, move the executable files to the
paml*/bin/folder and add this folder to your search path.

SUPPORT
PROTOCOL 2

OBTAIN AND INSTALL CODEML_SBA FOR UNIX/UNIX-LIKE
AND OS X SYSTEMS

This protocol describes how to obtain and install CODEML_SBA for OS X, FreeBSD,
GNU/Linux, and other Unix-like operating systems.

Necessary Resources

Hardware

Unix or Unix-like system with an Internet connection and a Web browser

1. Download the latest version of CODEML_SBA from https://github.com/Jehops/
codeml_sba and unpack the archive into a local folder. If you prefer, you can clone
the repository with git clone (https://github.com/Jehops/codeml_sba).

2. Navigate within your file system to the codeml_sba/folder, where the source
files are located. Use the following command to compile the program:

For systems using BSD make, type: make -f Makefile

For systems using GNU make, type: make -f Makefile.gnu
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3. If you have a folder for local programs inside your home account, then you can
move the executable files there.

Unix-like systems use the chmod command to set file permissions, including permitting
the file to function as an executable. To make CODEML_SBA executable type chmod
+x codeml_sba.

SUPPORT
PROTOCOL 3

LABELING THE FOREGROUND BRANCH OF A NEWICK TREE

This protocol describes how to download and install the program DENDROCYPHER and
use it to label a branch within a Newick formatted tree file. Figure 6.15.7 uses a simple
4-taxon tree to illustrate the relationship between the Newick format and the branches of
a phylogeny that will have a unique parameter in a model (e.g., the foreground branches
having ωFG in Model A).

Hardware

Any system with an Internet connection and a Web browser

Figure 6.15.7 The relationship between a labeled Newick tree and the branches of a phylogeny
that will have a unique parameter in a model. The operational taxonomic units (OTUs) at the tips
of the tree are labeled A, B, C, and D. Those branches that a user wants to have unique model
parameters are referred to a “foreground branches.” The foreground branches of each phylogeny
are shown in bold. The Newick tree (parenthetical tree notation) corresponding to each phylogeny
is shown below each case. In this example, the foreground branch is indicated within a Newick
tree using the #1 label. (A) An unlabeled phylogenetic tree. This tree will have no branch-specific
parameters. (B) The same (unlabeled) tree as in A, but with node IDs shown for both tip and
internal nodes. The Newick tree below the phylogeny is the same as in A; this is because Newick
trees do not include information about node IDs. The node IDs shown are those assigned by the
program DENDROCYPHER. Note that different programs can assign node IDs differently. The ID
for a branch is equal to the ID of its descendant node. (C) A phylogenetic tree having a single
foreground branch, shown in bold. The foreground branch will have ωFG in Model A. Because
different programs can label the same node differently, the user must supply the identifier for the
FG branch in the Newick tree. In this case the identifier is “#1”. Note that the FG branch in this tree
is equivalent to branch 2 in tree B above. (D) A phylogenetic tree having a set of three foreground
branches, shown in bold. All three foreground branches will have ωFG in Model A because they all
have the same identifier.
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1. Download the latest version of DENDROCYPHER from https://bitbucket.org/
EvoWorks/dendrocypher/downloads.

2. Unpack the archive into a local folder.

3. Use the following command to compile the program:

make -f Makefile

4. Create an analytical directory and move the executable file there.

5. Download FigTree from http://tree.bio.ed.ac.uk/software/figtree/.

FigTree is a program for tree manipulation and visualization. The feature required for
this protocol is its ability to read user-defined labels within a Newick formatted tree file
and display both the tree and labels via its graphical interface.

Pre-compiled Windows, OS X, and Java executables are provided at the above site. The
Java version should run on any system with Java version 1.5 or higher installed.

6. Place a copy of the tree file you want to annotate within the same analytical directory
that contains the DENDROCYPHER executable.

DENDROCYPHER takes as input a plain text file containing a tree in Newick format.
The tree must be rooted. The file must be named tree.txt.

7. Navigate within your file system to the directory that contains the DendroCypher
executable and run the program by typingDendroCypher at the command prompt.

DENDROCYPHER uses a simple menu system within the terminal window as its user
interface. Under MENU is a numbered list of options. Program options are selected by
entering a menu option at the command prompt.

8. Enter 1 at the prompt to show the tree on the screen.

Take this opportunity to examine the tree on the screen to make sure it is the one that you
want to annotate. Note that every node of this tree is annotated with an integer value. These
are the node IDs. Branches are labeled in DENDROCYPHER by specifying a node ID.

9. If the tree is correct, enter 2 at the prompt to print it to a file called
numbered_tree.txt

10. Open this file in FigTree to visualize the tree with each node numbered.

Use the following FigTree menu options to open the file: File→ Open→
numbered_tree.txt.

FigTree will recognize that the nodes of the tree are labeled and a dialog box will appear
asking you to supply a name for the labels it read from the tree. You can supply your own
name. We recommend “Node IDs.”

11. To show the node IDs in the tree (i) check the Node Labels box on the left side of
the program window, then (ii) expand the Node Labels option panel, and finally (iii)
change the value for the Display variable from “node ages” to Node IDs.

This will cause the Node IDs within numbered_tree.txt to appear on the screen.

12. Based on the graphical representation of the tree topology in FigTree, make note of
the node ID(s) that corresponds to the branch, or branches, of the tree you wish to
label.

Within DENDROCYPHER, branch numbers are equal to the ID of the node that they
connect to as an ancestral branch. So, a terminal branch number is equal to its tip node
ID. Likewise, an interior branch number is equal to the ID of the descendant node of the
branch. So, in FigTree, choose the number shown at a node to indicate the horizontal
branch that connects directly to that node.
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Figure 6.15.8 Alternative models for the equilibrium value of each codon. The heading of the
figure illustrates the effect on codon substitution when the same nucleotide change (A → C)
occurs at the first, second, and third positions of an AAA codon. The equilibrium frequencies are
given for the target codon under each of 5 alternative strategies for modeling its equilibrium value.
The πi parameter is the frequency of the ith nucleotide. Superscripts denote the position of the
codon (1, 2, or 3). When there is no superscript, the πi parameter denotes a value for all the sites
within the data. Fequal assumes that all sense codons are equally frequent; this is 1/61 under the
standard genetic code. F1 × 4 models the equilibrium frequency of the target codon as a simple
product of the empirical frequencies of the four nucleotides within the data. MG does not model
empirical codon frequencies. Rather, it models codon transition probabilities as proportional to the
frequency of the target nucleotide at the position where the substitution took place. F3 × 4 models
the equilibrium frequency of the target codon as a product of the empirical frequencies of the four
nucleotides at each position of the codon. F61 uses the empirical estimates of each of the 61
codons as their equilibrium frequencies. The number of free parameters in each model is denoted
np. Because frequencies must sum to 1, some parameter values can be obtained by subtraction,
and do not count as free parameters within np. MG denotes Muse and Gaut (1994). GY denotes
Goldman and Yang (1994).

13. Re-launch DENDROCYPHER and re-load the tree.

14. Enter 5 to label the desired branch(es) of the tree.

The program will prompt you to enter a node ID and then a label for that node ID. The
label must be an integer.

To label a branch, supply the ID of the descent node for that branch.

15. Enter 8 to view a Newick formatted tree with the labels you have entered.

Branches in a tree with labels (if any) are denoted by a “# mark” in the tree file. This
marks the branch to be labeled, and the value of the label is a user-defined integer value.
See Figure 6.15.7 for simple examples of labeled and unlabeled trees.

16. If the tree looks correct, enter 9 to print the labeled tree to a file called
marked_tree.txt.

The tree within the file marked_tree.txt now has a branch or branches marked
with a user-defined integer. These branches will be treated as the “foreground” branches
in the branch-site codon models. This tree file can be read directly by CODEML or
CODEML_SBA.

SUPPORT
PROTOCOL 4

ASSESS ROBUSTNESS OF RESULTS TO ALTERNATIVE MODELS
FOR CODON FREQUENCIES

CODEML and CODEML_SBA allow users to choose among several different strategies
for modeling the equilibrium value of each codon (Fig. 6.15.8). For some datasets,
these alternatives can lead to very different equilibrium values, which in turn can
make the inferences sensitive to the chosen model. This protocol indicates how to
check for robustness across three alternative models that are widely used in real data
analyses.
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Necessary Resources

Hardware

CODEML or CODEML_SBA can be compiled to run on computers running
Windows, OS X, FreeBSD, GNU/Linux, and other Unix-like operating
systems

Software

Users can choose either the CODEML or CODEML_SBA; the results will be
equivalent. See Support Protocols 1 and 2 for further details about how to
download and install these programs.

Files

The protocol requires: (i) a tree file in standard Newick format, (ii) a sequence
alignment file in standard PAML format, and (iii) a control file. The tree file and
alignment file for the sample data are provided online (see Basic Protocol 1).
The required control file is included in the CODEML and CODEML_SBA
software download.

1. Open codeml.ctl in a plain text editor and edit the following line within this file:

CodonFreq = 2 * 0:1/61 each, 1:F1X4, 2:F3X4 ...

This specifies the Goldman and Yang (1994) F3×4 model, which assumes that transition
probabilities are a function of equilibrium frequency of the target codon. The codon
equilibrium frequency is computed using the empirical frequencies of each nucleotide
at the three positions of the codon (F3×4-GY in Fig. 6.15.8). The model has 9 free
parameters.

Ensure that all other program variables are set appropriately within the control file. Recall
that setting model = 2 and NSsites = 2 is required to specify branch-site codon
Model A.

2. Open a terminal prompt and navigate within your file system to your analytical
directory. Check that the analytical directory contains the required files, and that the
control file is appropriate.

3. Run CODEML or CODEML_SBA.

4. Rename the rst file.

5. Open codeml.ctl in a plain text editor and edit the following line within this file:

CodonFreq = 5 * 0:1/61 each, 1:F1X4, 2:F3X4 ...

This specifies the Muse and Gaut (1994) F3×4 model. It assumes that transition proba-
bilities are a function of the equilibrium frequency of the target nucleotide at the position
of the codon where the state change occurred (MG in Fig. 6.15.8). This model also has 9
free parameters.

IMPORTANT NOTE: Change the name of the main result file via outfile =, or the
results from the previous run will be overwritten.

6. Repeat steps 2 to 4.

Do not forget to rename the rst file.

7. Open codeml.ctl in a plain text editor and edit the following line within this file:

CodonFreq = 3 * 0:1/61 each, 1:F1X4, 2:F3X4 ... Inferring
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This model assumes that transition probabilities are a function of equilibrium frequency of
the target codon, and the frequency of each codon is empirically estimated from the data
(F61-GY in Fig. 6.15.8). Under the universal genetic code, this model would have 60 free
parameters. This model is not recommended for small datasets.

IMPORTANT NOTE: Change the name of the main result file via outfile =, or the
results from the previous run will be overwritten.

8. Repeat steps 2 to 4.

Do not forget to rename the rst file.

9. Obtain the (i) MLEs of model parameters, (ii) the log likelihood score, and (iii) the
BEB posterior probability that each site evolved under positive selection.

By comparing these results, including any likelihood ratio tests, users can investigate
the robustness of their biological inferences to alternative strategies for modeling the
equilibrium value for each codon.

To assess the robustness of an LRT, steps 1 to 9 above must be repeated for both of the
models (null and alternative) that comprise the LRT.

SUPPORT
PROTOCOL 5

SMOOTHED BOOTSTRAP AGGREGATION FOR IDENTIFYING SITES
WITH A HISTORY OF POSTIVE SELECTION

This protocol describes how to use smoothed bootstrap aggregation (SBA) to identify
sites subject to positive selection in the FG branch under Model A. The method is
implemented in the program CODEML_SBA.

Necessary Resources

Hardware

CODEML_SBA can be compiled to run on computers running Windows, OS X,
FreeBSD, GNU/Linux, and other Unix-like operating systems

Software

See Support Protocol 2 for details about how to download and install
CODEML_SBA

Files

Bootstrapping requires: (i) a tree file in standard Newick format, (ii) a sequence
alignment file in standard PAML format, and (iii) a control file. The tree files
and alignment files for two example datasets are provided online (see Basic
Protocol 1). The required configuration file for CODEML_SBA is included in
the software download.

1. Obtain and install CODEML_SBA (see Support Protocol 2)

2. Create a new analytical directory to hold the input and result files for a single run.

3. Obtain the sequence alignment file and tree file required for the desired analysis, and
copy them to your analytical directory.

4. Make a copy of the default configuration file (codeml.ctl) for CODMEL_SBA
and place the copy within the same analytical directory.

5. Open codeml.ctl in a plain text editor and edit the lines within this file for the
first step of a three-step procedure:
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seqfile = seqfile.txt * contains sequence alignment
* seqfile = boot.txt * filename for bootstrap data
treefile = treefile.txt * tree structure file name
bootstrap = 100 * generate N bootstrap ...
* ndata = 100 * number of datasets
* sba = 1 * smoothed bootstrap aggregation
* h = .4 * bandwidth parameter...

The objective of the first step is to generate 100 bootstrap samples from an alignment.

6. Run CODEML_SBA to obtain the bootstrap samples.

This step of the procedure is very fast, and will produce a single file called boot.txt. This file
will contain 100 sequence alignments, each obtained by bootstrap sampling the columns
of the original sequence alignment.

7. Open codeml.ctl in a plain text editor and edit the following lines for the second
step of the three-step procedure:

* seqfile = seqfile.txt * contains sequence alignment
seqfile = boot.txt * filename for bootstrap data
treefile = treefile.txt * tree structure file name
ndata = 100 * number of datasets
* bootstrap = 100 * generate N bootstrap alignments
sba = 1 * smoothed bootstrap aggregation
* h = .4 * bandwidth parameter...

Do not forget that you must also set the program variables required for the codon model
you wish to assess. As the focus of this protocol is Model A, the following program variables
must be set as follows:

model = 2 * models for codons ...
NSsites = 2 * 0:one w;1:neutral;2:selection...

At the time of publication, SBA was implemented for codon models M2a, M8, and Model
A. SBA will be added for additional models.

8. Run CODEML_SBA a second time to obtain MLEs for bootstrap datasets

The step of the procedure is much slower, and may take several hours (depending on the
computer).

All the estimated parameters for each bootstrap dataset are provided as a single line in
a file called sba.params. If bootstrap = 100 is specified, then sba.params
should contain 100 lines.

The order of parameters in each line within sba.params is the same order as printed
within the main result file of CODEML and CODEML_SBA (see Fig. 6.15.4 for an example
based on Model A).

9. Open codeml.ctl in a plain text editor and edit the following lines for the third
step of the three-step procedure:

seqfile = seqfile.txt * contains sequence alignment
* seqfile = boot.txt * filename for bootstrap data
treefile = treefile.txt * tree structure file name
* ndata = 100 * number of datasets
* bootstrap = 100 * generate N bootstrap alignments
sba = 2 * smoothed bootstrap aggregation
h =.4 * bandwidth parameter...
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Do not forget to also set the program variables required for the codon model you wish to
assess. For Model A, the following program variables must be set as follows:

model = 2 * models for codons ...
NSsites = 2 * 0:one w;1:neutral;2:selection...

The h variable sets the bandwidth for kernel smoothing of the p parameters of the ω

distribution. The value of h must be set between 0 and 1; a bandwidth of 0 means that the
bootstrap distribution is unaffected by the kernel smoothing, whereas a value of 1 converts
the bootstrap distribution to a uniform distribution. The default value, 0.4, yields a
moderately “smoothed” version of the bootstrap distributions for p, and has worked well
for a variety of datasets.

Note that parameter values derived from the bootstrap distribution are applied to the
original dataset; thus, the sequence file must be re-set to the original data.

10. Run CODEML_SBA a third time to obtain a set of posterior probabilities for positive
selection in the FG branch at each site. These values should then be aggregated in
the form of the mean posterior probability, with inference at each site being based
on the mean value. This form of inference is referred to as smoothed bootstrap
aggregation.

This step produces a comma separated values file (CSV file) that can be directly read
by a spreadsheet application. Each value in the file is the posterior probability that
a site evolved with ωFG > 1. The data in each row of the file is obtained from one
set of bootstrap-derived MLEs (with some parameter values smoothed via a kernel-
smoothing technique). Inference is based on the distribution of posterior probability
scores within a column. The number of columns in this file is equal to the number of sites
in the alignment, and the values of the ith column are the posterior probabilities for the
ith site.

Taking the average over the column of values for the ith site yields a posterior probability
that marginalizes over the uncertainty of all the model parameters, including the branch
lengths. The values in each column can be further employed to compute a confidence
interval for the posterior probability of positive selection at each site in the original
alignment.

11. Compare the mean posterior probability for each to a threshold value (e.g., 0.95),
and report those sites with values greater than the threshold.

GUIDELINES FOR UNDERTANDING RESULTS

Interpretation of the Parameter Estimates (See Basic Protocol 1)

The first step with any model-based analysis is to fit the chosen model to the data and
carefully inspect the fitted parameter values. In the case of codon models, the MLEs
of the branch lengths provide an important signal about the suitability of the sequence
divergence represented by the data. Large numbers of very short (or zero) branch lengths
could indicate that there is insufficient signal within the sample. When there is too
little signal, the MLEs will have very high estimation errors, and can even be unstable.
Instabilities suggest that the approximation to large sample theory required for the ML
inferential framework cannot be assumed for the sample of data in hand (see Basic
Protocol 2 for a method of assessing this requirement for inference). A well-known case
where MLE instabilities appear to make the LRT for positive selection unreliable is the
Tax gene (Suzuki and Nei, 2004), and in that case there are many branches with very
small branch lengths. Although there are some small branches for the dataset employed
in Basic Protocol 1 (Ceacam), there is enough sequence divergence within the tree to
warrant an attempt at fitting Model A (see branch length estimates in Fig. 6.15.3). Basic
Protocol 2 provides a means of assessing the reliability of inferences derived from Model
A for the Ceacam dataset.
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Unreasonably large branch lengths also can signal a problematic dataset. Note that
branch lengths for codon models are defined as the number of nucleotide substitutions
per codon site (not per nucleotide site). Thus, substitution saturation is indicated by
branch length estimates >3 (not >1). Branch length MLEs >3 should be considered
a potential cause for concern. When many branches are >>3, the data are likely too
divergent for analysis under a codon model, and analysis under an amino acid model
should be considered. The presence of a few, or just one, unreasonably long branch
(>>3) can arise when there is an error in one or more of the foundational assumptions
of the model. For example, non-stationarity in the codon equilibrium frequencies can
lead to highly inflated branch lengths, which can negatively influence MLEs, LRTs, and
site identification via empirical Bayes methods (Bay and Bielawski, 2011). None of the
Ceacam branch lengths are unusually long, and all are <3, indicating that the sequences
are not too divergent for a codon model (Fig. 6.15.3).

The probability of a change from any one codon state to another within the model can
be modeled as depending on the equilibrium value of either the target codon (Goldman
and Yang, 1994) or the target nucleotide at one of the three positions of the codon (Muse
and Gaut, 1994). Figure 6.15.8 illustrates the difference between these two strategies, as
well as some variant models. These are two very different strategies for modeling codon
evolution, and when a gene has very biased codon usage, the choice of strategy can impact
the ω MLEs (e.g., Aris-Brosou and Bielawski, 2006). It is good practice to examine the
codon usage patterns within a dataset, and the Ceacam dataset has somewhat uneven
codon usage. Taking the four-fold degenerate codon family for serine as an example
clearly illustrates that there are both preferred and un-preferred synonymous codons for
this gene. Codon TTC is highly preferred, being observed 158 out of the 263 times
(60%) that a serine is encoded within this dataset. Alternatively, codon TCG is used just
six times (2%) to encode a serine. These and other codon usage patterns suggest that
results could be sensitive to the assumed model for codon frequencies. Such codon usage
patterns indicate that inferences about episodic changes in selection intensity (Basic
Protocol 3) should be assessed for robustness to the assumed model for equilibrium
codon frequencies (Support Protocol 4).

The MLEs of the Ceacam ω distribution obtained for Basic Protocol 1 (Fig. 6.15.3) were
obtained by using the F3 × 4 model (Fig. 6.15.8), which permits codon usage bias. Those
results suggest that a large fraction of sites (42%) were subject to very strong purifying
selection pressure (ω0 = 0) throughout the entire Ceacam phylogenetic tree, and another
fraction (48%) evolved under relaxed purifying selection (ω1 = 1.0; fixed within the
model). In addition, a small fraction (10%) were estimated to have evolved by episodic
positive selection along the FG branch (ωFG = 12.2). Note that very large estimates of
ω will often occur for an FG branch when there is strong signal in the data for a higher
than neutral nonsynonymous substitution rate. However, at the same branch, the signal
for synonymous change can be sparse, making it difficult to accurately estimate ω. In
such cases (which are not uncommon), the model can detect the signal for ω > 1, but
it cannot precisely estimate how much greater than 1. As long as the conditions for ML
inference have been met, the LRT can be used to formally test the hypothesis that ωFG > 1
(Basic Protocol 3) even when the value of ωFG cannot be precisely estimated. Moreover,
non-parametric bootstrapping (Basic Protocol 2) can be used to assess the uncertainty of
the estimated values of parameters such as ωFG.

In the case of the Ceacam phylogenetic tree, the foreground was specified as the branch
separating the Old World and New World monkeys. Thus, fitting the model to these data
has revealed a signal for an episode of adaptive divergence in Ceacam function between
these groups of primates. Basic Protocol 3 provides the means to formally test the
statistical significance of this signal. In addition, Basic Protocol 3 also includes empirical
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Bayes inference of which sites evolved by positive selection along the FG branch. This
is required because the MLE for p2 (p2a + p2b) indicates only that there is a 10% chance
that a randomly chosen site had positive selection along the FG branch—i.e., the MLEs
do not tell us which sites they are. Readers are referred to Yang et al. (2005) for further
details about empirical Bayesian methods for identification of positively selected sites.

Assessing if the Signal within a Dataset is Sufficient for Reliable Inferences (See
Basic Protocol 2)

The target of inference in this case was a small fraction of sites (p2) having a unique level
of selection pressure along just a single branch (ωFG). This is a challenging inference
task, and users should expect that estimation error will be associated with the parameters
of Model A, even in a well sampled dataset. However, the desirable properties of ML
inference are achievable with such data if the required statistical regularity conditions
have been met. In Basic Protocol 2, the non-parametric bootstrap was used as a means
of corroborating statistical regularity for the Ceacam dataset. CODEML_SBA was used
to obtain bootstrap distributions for all model parameters, but the p and ω parameters
represent the biggest estimation challenge, and these should be checked. We found that
these parameters had the unimodal distributions predicted by ML theory (e.g., p0 and ωFG

are shown in Fig. 6.15.9). Note that values for some model parameters are restricted (e.g.,
ωFG � 1), and truncated bootstrap distributions are possible in such cases. Also, the MLE
for ωFG could be at the stop points for the optimization algorithm for some datasets. As
these are not true components of the MLE distribution, users should take such limits into
consideration when assessing the properties of the distribution. This is different from the
boundary values on the pi parameters (0 and 1), which are determined by the model (and,
not the optimization algorithm). All the values obtained by bootstrapping Ceacam were
included in distributions shown in Figure 6.15.9; those distributions appear unimodal,
and symmetric when not too close to a boundary (po). Based on these results, the LRT
and BEB techniques employed in Basic Protocol 3 are expected to be reliable for the
Ceacam dataset.

A second dataset, NR1D1, was provided for Basic Protocol 2 for the purpose of illustrating
potential instabilities in distributions. This is also a primate dataset, but it differs in
that the human terminal linage is specified as the FG branch. This represents a very
common scenario among studies of primate adaptive evolution, as they often seek to
discriminate the human-specific evolutionary transitions from other events within the
primate evolutionary tree. Although the NR1D1 alignment is larger than Ceacam (12
versus 11 sequences, and 1842 vs. 1362 nucleotides), it appears to represent a sparser
sample of evolutionary signal. The hominid clade branch lengths are generally much
smaller for NR1D1 than Ceacam, which is the region where the FG branch was specified.
Further, by specifying the human linage as the FG branch, Model A is being focused on a
branch that is well known to represent very low sequence divergence. For these reasons,
it is reasonable to expect that the required regularity conditions might not be met for
NR1D1. Parametric bootstrapping reveals that this was indeed the case (Fig. 6.15.9). The
distributions of both p0 and ωFG were clearly bimodal, which contradicts expectations
derived from ML theory. These results suggest that LRT and BEB techniques employed
in Basic Protocol 3 might not be reliable for the NR1D1 dataset. In general, studies of
closely related sequences with complex codon models (such as episodic evolution in
humans) will likely be much more prone to these problems.

Making Inferences about Episodic Changes in the Intensity of Natural Selection
(See Basic Protocol 3)

Comparison of branch-site Model A with ωFG > 1 to Model A with ωFG = 1 is known
as the “branch-site test for positive selection.” Because there are several LRTs based
on branch-site models, this LRT is sometimes simply referred to as “Test 2.” The test
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Figure 6.15.9 Bootstrap-based estimates of MLE distributions for Ceacam and NR1D1. Distri-
butions are shown for parameters p0 and ωFG. The distributions for Ceacam are unimodal, and
symmetric up to the boundary on the parameter space. The distributions for NR1D1 are bimodal.
As asymptotic normality has not been attained for the NR1D1 estimates, the required regularity
conditions have not been met for this gene.

statistic for this LRT (2�lnL = 16.999) is highly significant, with p = 0.000037 under
χ2

1 . Because the null form of Model A is obtained by fixing ωFG = 1, the null distribution
is actually a 50:50 mixture of χ2

0 and χ2
1 (at α = 0.05, the critical value is actually 2.71

instead of 3.48). Thus, using χ2
1 for this test is recommended (see PAML manual), as it

makes the test a little more conservative. The Ceacam test statistic is highly significant,
so it does not make a difference in this case.

The LRT indicates that there is significant evidence for ωFG > 1 within the Ceacam
tree. This result permits two inferences about Ceacam evolution. First, this sample of
data contains significant evidence for functional divergence between Old World and New
World primates in a genetic system related to both tissue differentiation and modulation
of immune response. Second, the fraction of sites with ωFG > 1 (p2 in the model)
is significantly larger than zero. The MLE of p2 is 10%, suggesting that a randomly
selected site has a 10% chance of having ωFG > 1 along the FG branch. However, further
interpretation of this value is limited. First, the MLE of p2 has estimation errors (95%
bootstrap interval: [5%, 23%]). Second, these results provide no indication of which sites
might had evolved with ωFG > 1. This is why a second set of empirical Bayes analyses
was carried out as part of Basic Protocol 3.
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Table 6.15.1 Sites within Ceacam with a Posterior Probability > 0.9 for Positive Selection Along
the Foreground Branch (ωFG > 1) under Three Different Methodsa

SBA

NEB BEB Mean PP CI

397: 0.99 397: 0.99 397: 0.98 [0.915 , 1.000]

424: 0.97 424: 0.96 424: 0.97 [0.836 , 1.000]

418: 0.96 418: 0.95 418: 0.96 [0.803 , 1.000]

299: 0.96 299: 0.95 299: 0.96 [0.806 , 1.000]

297: 0.96 297: 0.95 297: 0.96 [0.796 , 1.000]

360: 0.91 244: 0.91 360: 0.93 [0.633 , 0.999]

244: 0.90 244: 0.92 [0.576 , 1.000]

388: 0.90 [0.472 , 0.999]

aNEB indicates naı̈ve empirical Bayes. BEB indicates Bayes empirical Bayes. SBA indicates smoothed bootstrap aggre-
gation. The kernel bandwidth for smoothing under SBA was 0.4.

Empirical Bayes (not to be confused with Full Bayes) is a method that passes the MLEs of
the ω distribution to Bayes’ Rule for the purpose of computing the posterior probability
that the data at a given alignment site could have evolved under each of the categories
of the model (site classes in Fig. 6.15.1). A site is identified as having evolved with ω >

1 along the FG branch (site classes 2a and 2b in Fig. 6.15.1) if the posterior probability
is large according to Bayes’ Rule. NEB is a technique for computing these posterior
probabilities by passing the MLEs to Bayes Rule without any accommodation of the
estimation errors (a technique that is acceptable when the ω distribution is well estimated).
Bayes empirical Bayes (BEB) is a technique that is used to obtain posterior probabilities
that are corrected for the estimation errors. BEB is not available for all models, but when
it is (as with Model A), those results should be preferred over NEB (Yang et al., 2005).
Table 6.15.1 shows sites with high a posterior probability for ω > 1 along the FG branch
under both NEB and BEB. Note that both NEB and BEB are sensitive to instabilities
in the MLEs. A new method, called Smoothed Bootstrap Aggregating (SBA), is now
available that is as least as powerful as BEB but is robust to instabilities in the MLE.
Unlike BEB, SBA derives its correction for parameter uncertainty from the data in hand.
A detailed description of SBA is beyond the scope of this unit; however, Support Protocol
5 describes how to use CODEML_SBA to obtain SBA posterior probability classifiers
for each site. SBA has the added benefit of providing output for computing a confidence
interval for the posterior probability of a particular evolutionary regime, such as ω >

1 along the FG branch (Table 6.15.1). In the case of Ceacam, there is no evidence of
instabilities, and the results are largely consistent among all three methods (Table 6.15.1).

COMMENTARY

Background Information
Inference of episodic natural selection re-

quires many stages of data processing and
analysis (Fig. 6.15.2), and results should be
rigorously evaluated at each of those stages
to ensure a reliable outcome. Although rarely
done, such assessments should be incorpo-
rated into an explicit experimental design.
Careful experimental design will be essen-
tial to the success of large-scale surveys of
gene sequence evolution, which have become
commonplace with the advent of low-cost,

high-throughput DNA sequencing technolo-
gies (e.g., Baker et al., 2016). We strongly
suggest that the experimental design of any
computational investigation include formal as-
sessment of (i) sequence and alignment qual-
ity, (ii) reliability of the statistical framework,
and (iii) robustness to the underlying model
assumptions.

For the present analysis, both sequence
and alignment quality should be rigorously
assessed prior to analyses with codon mod-
els (the first three stages in Fig. 6.15.2). In
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addition to exercising quality control over the
primary sequence data, the homology rela-
tionships among the sampled sequences must
be determined. Unintentional inclusion of par-
alogs within a dataset can lead to discrepan-
cies between gene trees and species trees (e.g.,
Mindell and Meyer, 2001), and inappropriate
use of a species tree can negatively impact
the results, even leading to false conclusions
about the history of natural selection pressure
(Bielawski, 2013). In addition, the results ob-
tained from codon models can be very sensi-
tive to alignment errors (Fletcher and Yang,
2010; Schneider et al., 2009). We believe that
an experimental design should include a mech-
anism for formal cross checking of alignments.
When the number of datasets in a study is not
too large, we recommend that every alignment
be independently assessed by at least two co-
authors, who subsequently compare results to
identify and mask regions of alignment un-
certainty. For large-scale surveys, where such
assessments can be impractical for every gene,
we recommend a two-phase screening process
(Baker et al., submitted). The idea is to make
an initial pass over a large set of alignments
obtained by automated methods and identify
a subset of candidate genes. In the second
phase of analysis the alignments of only those
genes that had a significant LRT are visually
inspected and masked, and then re-analyzed to
verify the significant results. We are encour-
aged by a recent, fully Bayesian, method for
joint assessment of natural selection and align-
ment uncertainty (Redelings, 2014), which
provides yet another tool for controlling the
negative impact of alignment uncertainty in
such studies.

Critical Parameters
Estimation methods such as maximum like-

lihood are widely used because they have
attractive, and generally reliable, limiting
properties. Under the appropriate conditions,
maximum likelihood may be assumed to be
consistent and efficient, with asymptotic nor-
mality of its estimates (Bickel and Kjell,
2015). However, the statistical regularity con-
ditions required for these properties are rarely
checked, and failure to meet those conditions
can severely impact inferences under the more
complex codon models. The task of assessing
signal at a small subset of sites for evolution-
ary change along few, or even one, branch of
a tree is very challenging. Moreover, the re-
quirement that the true parameter value is at
the interior of the parameter space is often vi-

olated under some codon models. This leads
to the very real possibility that regularity con-
ditions might not be met with some datasets,
and, further, that the resulting instabilities in
the MLEs can invalidate the LRTs and neg-
atively bias BEB-based inferences. Thus, we
recommend that the properties of the MLEs
under complex codon models should be inves-
tigated in all datasets via the bootstrap pro-
cedure formalized in Basic Protocol 2 of this
unit. Indeed, the NR1D1 example provided for
Basic Protocol 2 illustrates that the required
regularity conditions will not necessarily be
met in all datasets, and that this condition can
be diagnosed by assessing the bootstrap esti-
mates of the parameters of the ω distribution.

Robustness refers to the degree to which re-
sults obtained under a given method are resis-
tant to errors produced by deviations from the
underlying assumptions of the method. Ap-
plication of a codon model to a real dataset
requires a very large number of assumptions,
ranging from the fundamental assumption of
positional homology (i.e., that the alignment
is correct) to the assumption that a specific
parametric distribution for ω is appropriate
for the data in hand. The CODEML program
provides the capability to assess robustness of
(i) MLEs, (ii) hypothesis tests, and (iii) em-
pirical Bayes site identification to alternative
models for both equilibrium frequencies and
the ω distribution. The former type of robust-
ness investigation is the basis of Support Pro-
tocol 4, which is directly referenced in Ba-
sic Protocol 3. In this setting, Model A is
fixed, and alternative models for codon fre-
quencies (Fig. 6.15.8) are employed to re-test
a hypothesis and re-identify sites within the
alignment. However, CODEML also provides
alternative branch-site modes (Model B, Yang
and Nielsen, 2002; Zhang et al., 2005), and
clade-site models (Models C and D; Bielawski
and Yang, 2004), and these permit alterna-
tive LRTs for sites subject to a change in
the intensity of selection pressure. Thus, a
second strategy for assessing robustness via
CODEML is to fix the model for equilibrium
frequencies and employ alternative ω distribu-
tions to re-test the same hypotheses, and to re-
identify sites within the same alignment. We
recommend that all investigations of selection
pressure via CODEML employ both strate-
gies. Further, empirical studies of large groups
of genes have revealed that changes in selec-
tion intensity can go undetected when only a
single family of codon models is used (Schott
et al., 2014, Baker et al., submitted).
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Suggestions for Further Analysis
The chosen model for codon equilibrium

frequency is just one of many fundamental as-
sumptions upon which codon models are built.
Rigorous assessment of robustness to the other
assumptions is rarely pursued, although rele-
vant computational tools are available via al-
ternative software packages. Among the most
critical are assumptions about the absence of
(i) gene recombination, (ii) among-site vari-
ability in the synonymous rate, (iii) among-
site variability in one or more other aspects of
the substitution process, and (iv) uncertainty
about the most appropriate genealogy for the
data in hand. Frequent within-gene recombina-
tion can negatively impact some LRTs (Anisi-
mova et al., 2003; Shriner et al., 2003). We
suggest screening genes for this using either
the GARD-MBP method (Kosakovsky Pond
et al., 2006) or GENECOV (Sawyer, 1989),
both of which are reasonably powerful and
yet robust to a history of positive selection
(Bay and Bielawski, 2011). Scheffler et al.
(2006) offer a computationally tractable so-
lution for genes having detectable levels of re-
combination. Among-site variation in any as-
pect of the baseline rate of DNA/RNA sub-
stitution, including dS, can negatively im-
pact estimates of the ω distribution of some
models (Koskovsky Pond and Muse, 2005;
Rubinstein et al., 2011). We recommend us-
ing a multilayer codon model to formally test
for such variation (Rubinstein et al., 2011) as
well as assess its potential impact on the poste-
rior distribution for ω (Baker et al., 2016). The
multilayer models are only available for codon
models where ω varies among sites, but detect-
ing such sensitivity is critical as the branch-site
models assume a homogenous baseline rate
of DNA/RNA substitution. Variation in other
aspects of the substitution process, such as
the transition/transversion rate-ratio or codon
frequencies, also can negatively impact the
inference of natural selection pressure (Bao
et al., 2008). For genes where a priori bio-
logical knowledge suggests such a possibil-
ity (e.g., transmembrane proteins) the program
LIBAC can be used to assess its impact on the
inference of natural selection pressure (Bao
et al., 2008). Lastly, all analyses carried out in
CODEML are required to assume that the gene
tree topology is known a priori. It is often the
case that the true tree is unknown, and there
is substantial uncertainty in its estimate. It is
always good practice to obtain a set of rea-
sonably good estimates of the tree topology
using a program such as RAxML (Stamatakis,
2014) and reanalyze the data under each of

those topologies. In a large-scale survey of
primate nuclear receptor (NR) genes, Baker
et al. (2016) uncovered cases of sensitivity to a
wide variety of fundamental assumptions even
though the dataset was comprised of relatively
closely related, and homogeneously evolving,
lineages. We predict that robustness analyses
such as these (last stage in Fig. 6.15.2) will
have an even greater impact on studies of more
divergent lineages.

Within this unit we have presented a set
of protocols that are intended to fit within
a larger and more comprehensive analytical
design. Through automation, the analytical
structure depicted in Figure 6.15.2 can be
extended to large-scale evolutionary surveys.
Such a design implies larger numbers of hy-
pothesis tests, and the single test significance
level will no longer provide adequate control
over the probability of making one or more
type I errors. We recommend adding false dis-
covery rate control (Storey et al., 2002) as a
means of inferring which subgroups of genes
share a common evolutionary scenario such as
episodic evolution. By employing a series of
quality-control, statistical-reliability, and ro-
bustness analyses within a design, users of
codon models can identify problematic cases.
We believe that careful experimental design is
just as critical to computational biology as it is
to traditional experimental biology. However,
we recognize that each dataset poses unique
challenges, and the increase in understanding
that comes from the process of data analysis
outlined in Figure 6.15.2 should be used to
update the design as required.
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