

Programs in the package

for bases
continuous-gamma for bases
aaml (for amino acids) & codonml (for codons)
simulation, tree distances
$d_{\rm N}$ and $d_{\rm S}$ by YN00
parsimony (Yang and Kumar 1996)
Bayes MCMC tree (Yang & Rannala 1997). Slow

				Part 1:	PAML Introduction
	seqfile treefile outfile	= seqfile = tree.tz = results	e.txt * sequence data filename xt * tree structure file name s.txt * main result file name		
	noisy verbose runmode	= 9 = 1 = 0	<pre>* 0,1,2,3,9: how much rubbish on the * 1:detailed output * 0:user defined tree</pre>	screen	
(seqtype CodonFreq	= 1 = 2	* 1:codons * 0:equal, 1:F1X4, 2:F3X4, 3:F61		
	model	= 0	\star 0:one omega ratio for all branches		
	NSsites	= 0	<pre>* 0:one omega ratio (M0 in Tables 2 at * 1:neutral (M1 in Tables 2 and 4) * 2:selection (M2 in Tables 2 and 4) * 3:discrete (M3 in Tables 2 and 4) * 7:beta (M7 in Tables 2 and 4) * 8:beta&w (M8 in Tables 2 and 4)</pre>	and 4)	
	icode	= 0	* 0:universal code		
t	fix_kappa kappa	= 0 = 2	* 1:kappa fixed, 0:kappa to be estima * initial or fixed kappa	ated	
t	fix_omega omega	= 0 = 5	* 1:omega fixed, 0:omega to be estima * initial omega	ated	
	*ncatG *ncatG	= 3 = 10	<pre>*set ncatG for models M3, M7, and M8 * # of site categories for M3 in Tab * # of site categories for M7 and M8</pre>	!!! le 4 in Table	e 4

	Part 2: Real data exercises
Exercises:	
Rasmus Nielsen Editor Statistical Methods in Molecular Evolution	<page-header><section-header><section-header><section-header><section-header><text><text><list-item><list-item><section-header></section-header></list-item></list-item></text></text></section-header></section-header></section-header></section-header></page-header>

E	xercises:		
	Method/model	program	dataset
1	Pair-wise ML method	codeml	Drosophila GstD1
2	Pair-wise ML method	codeml	Drosophila GstD1
3	M0 and "branch models"	codeml	Ldh gene family
4	M0 and "site models"	codeml	HIV-2 <i>nef</i> genes
	1		

	l	Part 2: Real data exercises
Exercise 1:	ML estimation of the <i>d</i> _N / <i>d</i> _S (ω) ra for <i>GstD1</i>	tio "by hand"
Dataset:	<i>GstD1</i> genes of <i>Drosophila melanogas</i> <i>simulans</i> (600 codons).	ster and D.
Objective:	 Use codeml to evaluate the likelihood sequences for a variety of fixed ω val 1- Plot log-likelihood scores against ω and determine the maximum lestimate of ω. 2- Check your finding by running conhill-climbing algorithm. 	the <i>GstD1</i> ues. t the values of likelihood odeml's

Evorcico 1	Part 2: Real data exercises
EXELCISE I	
	Exercise 1
	If you forget what to do, there is a
	"step-by-step" guide on the course web site.
	There is also a "I labr File" to halp you to get
	There is also a Helphile to help you to get
	what you need from the output of codeml

Part 2: Real data exerc
Investigating the sensitivity of the d_N/d_S ratio to assumptions
<i>GstD1</i> genes of <i>Drosophila melanogaster</i> and <i>D. simulans</i> (600 codons).
1- Test effect of transition / transversion ratio (κ) 2- Test effect of codon frequencies (π_l 's) 3- Determine which assumptions yield the largest and smallest values of <i>S</i> , and what is the effect on ω

Exercise 2	Part 2: Real data exercises
"Codor	nFreq=" is used to specify the equilibrium codon frequencies
Fequal	 1/61 each for the standard genetic code CodonFreq = 0 number of parameters in the model = 0
F3x4:	 calculated from the average nucleotide frequencies at the three codon positions CodonFreq = 2 number of parameters in the model = 9
F61	 also called "ftable"; empirical estimate of each codon frequency CodonFreq = 3 number of parameters in the model = 61

rcise 2				Part 2: F	Real data exerci:
	E>	$xample: A \rightarrow C$			
	Ą	$AA \rightarrow CAA$			
	A	$AA \rightarrow ACA$			
	A	$AA \rightarrow AAC$			
	Target	codon (nucle	otide)		
	CAA	ACA	AAC	NP	
No bias	1/61	1/61	1/61	0	
F1×4	$\pi_{\rm c}(\pi_{\rm A})^2$	$\pi_{\rm c}(\pi_{\rm A})^2$	$\pi_{\rm c}(\pi_{\rm A})^2$	3	
MG	π_{c}^{1}	π_c^2	π_c^3	9	
F3×4 (GY)	$\pi_C^1\pi_A^2\pi_A^3$	$\pi_A^1\pi_C^2\pi_A^3$	$\pi_A^1\pi_A^2\pi_C^3$	9	
F61 (GY)	π_{CAA}	π_{ACA}	π_{AAC}	61	

Exercise 2	Part 2:	Real data exercises
Further details for about the assumptions tested in ACTIVITY 2		
Assumption set 1: (Codon bias = none; Ts/Tv bias = none) CodonFreq=0; kappa=1; fix_kappa=1		
Assumption set 2: (Codon bias = none; Ts/Tv bias = Yes) CodonFreq=0; kappa=1; fix_kappa=0		
Assumption set 3: (Codon bias = yes [F3x4]; Ts/Tv bias = CodonFreq=2; kappa=1; fix_kappa=1	none)	
Assumption set 4: (Codon bias = yes [F3x4]; Ts/Tv bias = CodonFreq=2; kappa=1; fix_kappa=0	Yes)	
Assumption set 5: (Codon bias = yes [F61]; Ts/Tv bias = CodonFreq=3; kappa=1; fix_kappa=1	none)	
Assumption set 6: (Codon bias = yes [F61]; Ts/Tv bias = CodonFreq=3; kappa=1; fix_kappa=0	Yes)	

Exer	rcise 2							Part 2:	Real data exercises
	Comp step″	plete this tab guide on th	e (If you	forge web-si	t what ite.)	to do,	there	is a "s	tep-by-
	Assump	2 : Estimation of $d_{\rm S}$	and d_N between κ	n <i>Drosopi</i> S	11la melanc N	<i>gaster</i> and ds	<u>t D. sımula</u> d _N	ns GstD1 ω	genes ℓ
	Fequal Fequal F3×4 F3×4 F61 F61	+ $\kappa = 1$ + $\kappa = \text{estimated}$ + $\kappa = 1$ + $\kappa = \text{estimated}$ + $\kappa = 1$ + $\kappa = \text{estimated}$	1.0 ? 1.0 ? 1.0 ?	? ? ? ?	? ? ? ? ?	? ? ? ? ?	? ? ? ? ?	? ? ? ?	? ? ? ? ?
			κ = transition S = number N = number $\omega = d_N/d_S$ ℓ = log like	on/transv of syno r of nons elihood	rersion ra nymous s ynonymo score	te ratio ites ous sites			

	Part 2: Real data exercise
Exercise 3:	Test hypotheses about molecular evolution of <i>Ldh</i>
Dataset:	The <i>Ldh</i> gene family is an important model system for molecular evolution of isozyme multigene families. The rate of evolution is known to have increased in <i>Ldh</i> -C following the gene duplication event
Objective:	Use LRTs to evaluate the following hypotheses:
	1- The mutation rate of Ldh-C has increased relative to Ldh-A,
	2- A burst of positive selection for functional divergence occurred following the duplication event that gave rise to <i>Ldh-C</i>
	3- There was a long term shift in selective constraints following the duplication event that gave rise to <i>Ldh-C</i>

Exercise 3		Part 2: Real data exercises
	<pre>seqfile = seqfile.txt * sequence data filename treefile = tree.txt * tree structure file name [CHANGE THIS] outfile = results.txt * main result file name</pre>	
	<pre>noisy = 9 * 0,1,2,3,9: how much rubbish on the screen verbose = 1 * 1:detailed output rummode = 0 * 0:user defined tree</pre>	
	<pre>seqtype = 1 * 1:codons CodonFreq = 2 * 0:equal, 1:F1X4, 2:F3X4, 3:F61</pre>	
	<pre>model = 0 * 0:one omega ratio for all branches * 1:separate omega for each branch 2:user specified dW/36 ratios for branches</pre>	
	NSsites = 0 *	
	<pre>icode = 0 * 0:universal code</pre>	
	<pre>fix_kappa = 0 * 1:kappa fixed, 0:kappa to be estimated kappa = 2 * initial or fixed kappa</pre>	
	<pre>fix_omega = 0 * l:omega fixed, 0:omega to be estimated</pre>	
	*H ₀ in Table 3: *model = 0 *(X02152Kom,U07178Sus,(M22585rab,((NM017025Rat,U13687Mus), *((AF070995C,(X04752Mus,U0717Rat)),(U95378Sus,U13680Hom)),(X538280G1, * U22410023))));	
	*H_ in Table 3: model = 2 «K08152kus,U07178sus,(M22585rab,((NM017025Rat,U13687Mus),(((AF070995C, «K04752kus,U07177Rat)),(U95378Sus,U13680Hom)) #1 ,(X538280G1,U284100G2)) *)));	
	*H; in Table 3: *model = 2 * (X02152Hom,U07178Sus,(M22585rab,((NM017025Rat,U13687Mus),(((AF070995C * 4),(X04752Mus #1,U07177Rat #1)#1)#1,(U95378Sus #1,U13680Hom #1) * 4]!\$1,(X53282601,U2841002))));	
	*H ₃ in Table 3: *model = 2 * (X02152Hom,U07178Sus,(M22585rab,((NM017025Rat,U13687Mus),(((AF070995C * #1,(X04752Mus #1,U07177Rat #1)#1)#1,(U95378Sus #1,U13680Hom #1) * #1)#1,(X53828061 #2,U28410062 #2)#2)));	

		Part 2: Real data exercises
Exercise 4:	Testing for adaptive evolution in the <i>nef</i> g HIV-2 (Start tonight, but finish as homewo	ene of human ork)
Dataset:	44 <i>nef</i> sequences from a study population of infected people living in Lisbon, Portugal. The HIV-2 has received less attention than HIV-1, because HIV-2 is associated with reduced vir pathogenicity relative to HIV-1	37 HIV-2 e <i>nef</i> gene in , presumably rulence and
Objectives:	 Learn to use LRTs to test for sites evolvir selection in the <i>nef</i> gene. If you find significant evidence for positiv identify the involved sites by using empirical methods. 	ng under positive re selection, then Il Bayes

Exercise 4	Part 2: Real data exercises
<pre>seqfile = seqfile.txt</pre>	* sequence data filename
<pre>* treefile = treefile_M0.txt * treefile = treefile_M1.txt * treefile = treefile_M2.txt * treefile = treefile_M3.txt * treefile = treefile_M7.txt * treefile = treefile_M8.txt</pre>	 SET THIS for tree file with ML branch lengths under M0 SET THIS for tree file with ML branch lengths under M1 SET THIS for tree file with ML branch lengths under M2 SET THIS for tree file with ML branch lengths under M3 SET THIS for tree file with ML branch lengths under M7 SET THIS for tree file with ML branch lengths under M8
<pre>outfile = results.txt noisy = 9 verbose = 1 runmode = 0 seqtype = 1 CodonFreq = 2 model = 0</pre>	<pre>* main result file name * lots of rubbish on the screen * detailed output user defined tree * codons * F3X4 for codon ferquencies * one omega ratio for all branches</pre>
* NSsites = 0 * NSsites = 1 * NSsites = 2 * NSsites = 3 * NSsites = 7 * NSsites = 8	* SET THIS for M0 * SET THIS for M1 * SET THIS for M2 * SET THIS for M3 * SET THIS for M7 * SET THIS for M8
<pre>icode = 0 fix_kappa = 1 * kappa = 4.43491 * kappa = 4.39117 * kappa = 5.08964 * kappa = 4.89033 * kappa = 4.2750 * kappa = 4.87827</pre>	<pre>* universal code * kappa fixed * kappa fixed * SET THIS to fix kappa at MLE under M0 * SET THIS to fix kappa at MLE under M1 * SET THIS to fix kappa at MLE under M3 * SET THIS to fix kappa at MLE under M7 * SET THIS to fix kappa at MLE under M8</pre>
fix_omega = 0 omega = 5	* omega to be estimated * initial omega
* ncatG = 3 * ncatG = 10	* SET THIS for 3 site categories under M3 * SET THIS for 10 of site categories under M7 and M8
<pre>fix_blength = 2</pre>	* fixed branch lengths from tree file

Exercise 4

A note about exercise 4 run-times (OUTDATED)				
Model	Full run-time	Exercise run time		
M0	01:09:42	00:01:02		
M1a	01:50:50	00:02:01		
M2a	02:49:49	00:10:18		
M3	04:00:51	00:20:53		
M7	07:45:39	00:17:37		

<u>M8</u> 14:43:38 00:34:55

Try running models M0 and M1a now

• Run the rest of the models overnight

• I am here for both weeks; see me if you have any questions

Table E4: Parameter es sites for HIV-2 <i>nef</i> gene	stimates an es.	d likelihood scores under models of	f variable ω ratios	among
Nested model pairs	$d_{\rm N}/d_{\rm S}^{b}$	Parameter estimates ^c	PSS ^d	l
M0: one-ratio (1) ^a	?	<i>ω</i> =?	N.A.	?
M3: discrete (5)	?	$p_{0,} = ?, p_{1,} = ?, (p_2 = ?)$? (?)	?
		$\omega_0 = ?, \ \omega_1 = ?, \ \omega_2 = ?$		
M1: neutral (1)	?	$p_0 = ?(p_1 = ?)$	N.A.	?
M2: selection (3)	?		? (?)	?
		$\omega_0 = ?, (\omega_1 = 1), \omega_2 = ?$		
M7: beta (2)	?	p = ?, q = ?	N.A.	?
M8: beta& $\omega(4)$?	$p_0 = ? (p_1 = ?)$ $p = ?, a = ?, \omega = ?$? (?)	?

 b This $d_{\rm N}/d_{\rm S}$ ratio is an average over all sites in the HIV-2 nef gene alignment.

^c Parameters in parentheses are not free parameters.

^{*d*} PSS is the number of positive selection sites (NEB). The first number is the PSS with posterior probabilities > 50%. The second number (in parentheses) is the PSS with posterior probabilities > 95%.

NOTE: CodemI now implements models M1a and M2a !

Statistical Methods in Molecular Evolution	5 Maximum Likelihood Methods for Detecting Adaptive Protein Evolution Joseph P. Balenakii and Zhenga Yang ² ¹ Department of Biolog, Dahmada University, Balfas, Nova Souta BBH 011, ² Department of Biolog, University Collega London, Gaves Street, Landen WCE 6077, United Kingdom, z-yangtheil.ac.uk 2. Ditroitme colver, the genes encoding them undergo mutation, and the evolu- tionary that of the new mutation is determined by random genetic drift as well ap mrifting or pointive (Daviering) and editionary that as well ap mrifting or pointive (Daviering) and edition.	
	process was realized in the late 1970s when techniques to measure genetic variation at the segmence level were developed. The arrival of molecular se- quence data also interactifies the debate concerning the relative importance of the sequence of the se	
🖄 Springer	win be less than 1, whereas in nonsymptymous minimum and the anymitty of the fixed at a higher rate than a synonymous mutations, and d_X/d_S will be greater than 1. A d_X/d_S ratio equal to one is consistent with neutral evolution.	