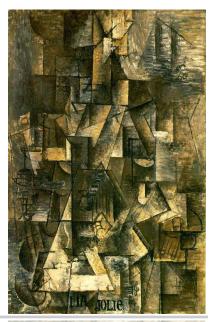
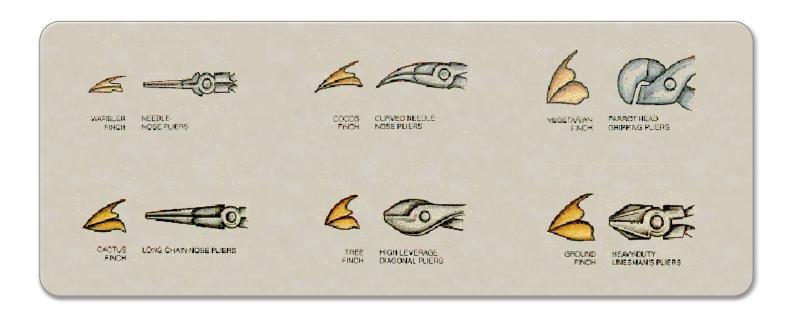
codon substitution models and the analysis of natural selection pressure

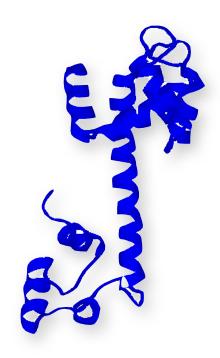
Joseph P. Bielawski
Department of Biology
Department of Mathematics & Statistics
Dalhousie University



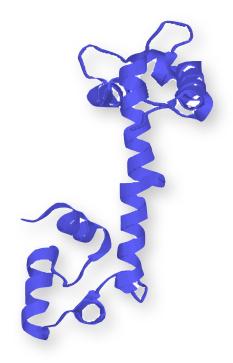
morphological adaptation



protein structure



Troponin C: fast skeletal



Troponin C: cardiac and slow skeletal

gene sequences

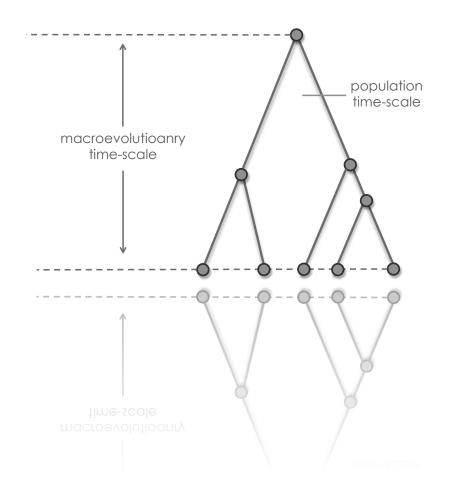
human cow rabbit rat opossum

GTG	CTG	TCT	CCT	GCC	GAC	AAG	ACC	AAC	GTC	AAG	GCC	GCC	TGG	GGC	AAG	GTT	GGC	GCG	CAC
			G.C				T	T										.GC	A
			C	T					Α		A.T			.AA		A.C		AGC	
	C		G.A	.AT		A			A		AA.	TG.		G		A	T	. GC	T
	C	G	GA.	Т			Т	С	G	A		AT.		Т		G	A	. GC	
GCT	GGC	GAG	TAT	GGT	GCG	GAG	GCC	CTG	GAG	AGG	ATG	TTC	CTG	TCC	TTC	CCC	ACC	ACC	AAG
	A	.CT		C	A		Т							AG.					
.G.				C	C			G					T	GG.					
.G.	T	A		C	.A.			A	С				GCT	G					
C	T	.CC	C	.CA	T	A	T	T	.cc	A	.CC		C				T		A
ACC	TAC	TTC	CCG	CAC	TTC	GAC	CTG	AGC	CAC	GGC	TCT	GCC	CAG	GTT	AAG	GGC	CAC	GGC	AAG
			C								G			C					G
			C				T.C	.c.				. AG		A.C	A	.c.			
			T.T		A.T	Т	G.A		.c.					C		.CT			
Т			C					TC.	.c.		C			A.C	С	T	Т	T	

The goals and the plan

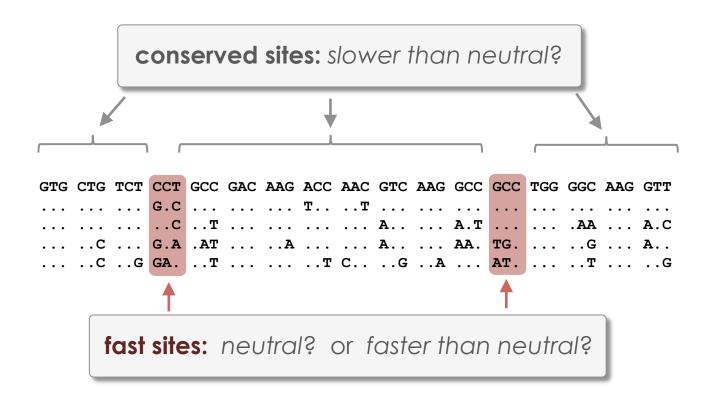
neutral theory dN/dS mechanistic process phenomenological outcomes part 1: introduction part 2: mechanistic process MutSel framework part 3: phenomenological freq dependent selection episodic selection modeling shifting balance types of models 3 analysis tasks assumptions matter best practices / example

part 1: introduction



evolutionary rate depends on intensity of selection

selectively constrained = slower than neutral (drift alone) adaptive divergence = faster than neutral (drift alone)



What is the neutral expectation?

the **number of new mutations** arising in a
diploid population

 $2N\mu$

the **fixation probability** of a new
mutant by drift

 $\frac{1}{2N}$

The substitution (fixation) rate, k

$$k = 2N\mu \times 1/2N$$

the elegant simplicity of **neutral theory**: $k=\mu$

genetic code determines impact of a mutation

	U	C	Α	G
	UUU Phe	UCU Ser	UAU Tyr	UGU Cys
	UUC Phe	UCC Ser	UAC Tyr	UGC Cys
U	UUA Leu	UCA Ser	UAA Stop	UGA Stop
	UUG Leu	UCG Ser	UAGStop	UGG Trp
	CUU Leu	CCU Pro	CAU His	CGU Arg
С	CUC Leu	CCC Pro	CAC His	CGC Arg
C	CUALeu	CCA Pro	CAA GIn	CGA Arg
	CUGLeu	CCG Pro	CAG GIn	CGG Arg
	AUU lle	ACU Thr	AAU Asn	AGU Ser
A	AUC IIe	ACC Thr	AAC Asn	AGC Ser
`	AUA Ile	ACA Thr	AAA Lys	AGA Arg
	AUG Met	ACG Thr	AAG Lys	AGG Arg
	GUU Val	GCU Ala	GAU Asp	GGU Gly
G	GUC Val	GCC Ala	GAC Asp	GGC Gly
9	GUA Val	GCA Ala	GAA Glu	GGA GIV
	GUG Val	GCG Ala	GAG Glu	GGG Gly

http://www.langara.bc.ca/biology/mario/Assets/Geneticode.jpg

The genetic code determines how random changes to the gene brought about by the process of mutation will impact the function of the encoded protein.

Kimura (1968)

 d_s : number of synonymous substitutions per synonymous site (K_s)

 d_N : number of nonsynonymous substitutions per nonsynonymous site (K_A)

 $\boldsymbol{\omega}$: the ratio $d_{\rm N}/d_{\rm S}$; it measures selection at the protein level

an index of selection pressure

rate ratio	mode	example
dN/dS < 1	purifying (negative) selection	histones
dN/dS = 1	Neutral Evolution	pseudogenes
dN/dS > 1	Diversifying (positive) selection	MHC, Lysin

Why use d_N and d_S ? (Why not use raw counts?)

example of counts:

300 codon gene from a pair of species

5 synonymous differences

5 nonsynonymous differences

$$5/5 = 1$$

why <u>don't</u> we conclude that rates are equal (i.e., **neutral evolution**)?

the genetic code & mutational opportunities

Relative proportion of different types of mutations in hypothetical protein coding sequence.												
	Expected number of changes (proportion)											
Туре	All 3 Positions	1 st positions	2 nd positions	3 rd positions								
Total mutations	549 (100)	183 (100)	183 (100)	183 (100)								
Synonymous	134 (25)	8 (4)	0 (0)	126 (69)								
Nonsyonymous	392 (71)	166 (91)	176 (96)	57 (27)								
nonsense	23 (4)	9 (5)	7 (4)	7 (4)								

Modified from Li and Graur (1991). Note that we assume a hypothetical model where all codons are used equally and that all types of point mutations are equally likely.

Why do we use d_N and d_S ?

same example, but using d_N and d_S :

Synonymous sites =
$$25.5\%$$

S = $300 \times 3 \times 25.5\% = 229.5$

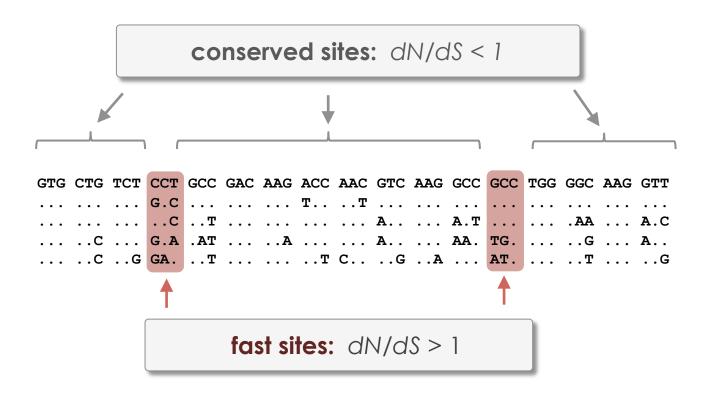
Nonsynonymous sites =
$$74.5\%$$

N = $300 \times 3 \times 74.5\% = 670.5$

So,
$$d_S = 5/229.5 = 0.0218$$

 $d_N = 5/670.5 = 0.0075$

 $d_N/d_S(\omega) = 0.34$, purifying selection !!!



conclusion: *dN* differs from *dS* due to the effect of selection on the protein.

mutational opportunity vs. physical site

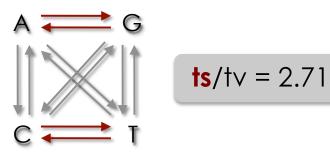
Relative proportion of different types of mutations in hypothetical protein coding sequence.												
	Expected number of changes (proportion)											
Туре	All 3 Positions	1 st positions	2 nd positions	3 rd positions								
Total mutations	549 (100)	183 (100)	183 (100)	183 (100)								
Synonymous	134 (25)	8 (4)	0 (0)	126 (69)								
Nonsyonymous	392 (71)	166 (91)	176 (96)	57 (27)								
nonsense	23 (4)	9 (5)	7 (4)	7 (4)								

Note that by framing the counting of sites in this way we are using a "mutational opportunity" definition of the sites. Thus, a synonymous or non-synonymous site is <u>not</u> considered a physical entity!

Note that we assume a hypothetical model where all codons are used equally and that all types of point mutations are equally likely.

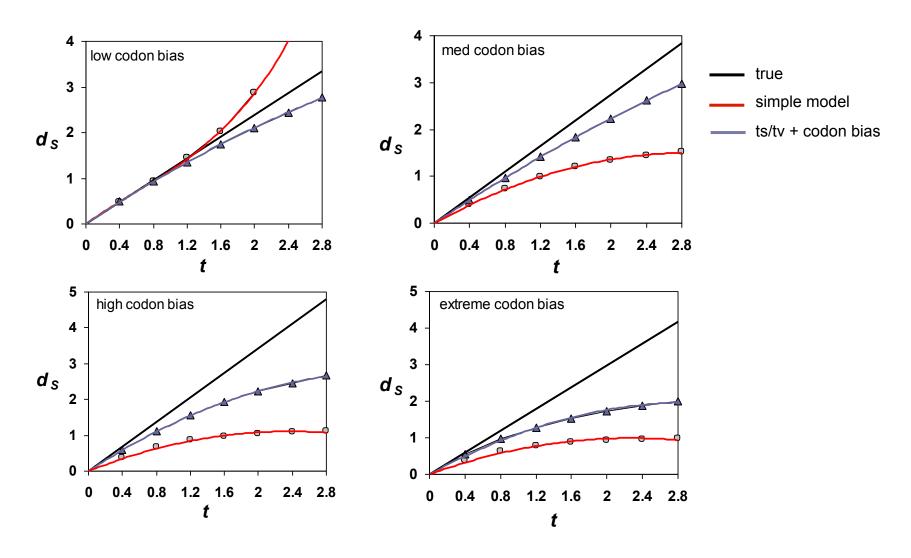
real data have biases (Drosophila GstD1 gene)

transitions vs. transversions:



preferred vs. un-preferred codons:

	<u>paı</u>	<u>rt</u>	<u>ial</u>	codon	usa	ge	e ta	able	f	0	r t	h€	e <i>GstI</i>	D ge	ne	e o:	£	Drosc	phila
	Phe	F	TTT	0	Ser	s	TCT		0	ı	Tyr	Y	TAT	1	1	Cys	С	TGT	0
_			TTC	27	I		TCC		15	I			TAC	22	ı			TGC	6
	Leu	L	TTA	0			TCA		0	I	***	*	TAA	0	١	***	*	TGA	0
			TTG	1			TCG		1	١			TAG	0	I	Trp	W	TGG	8
	Leu	L	CTT	2	Pro	P	CCT		1	١	His	Н	CAT	0	I	Arg	R	CGT	1
			CTC	2			ccc		15	١			CAC	4	١			CGC	7
			CTA	0			CCA		3	I	Gln	Q	CAA	0	١			CGA	0
			CTG	29			CCG		1	I			CAG	14	١			CGG	0



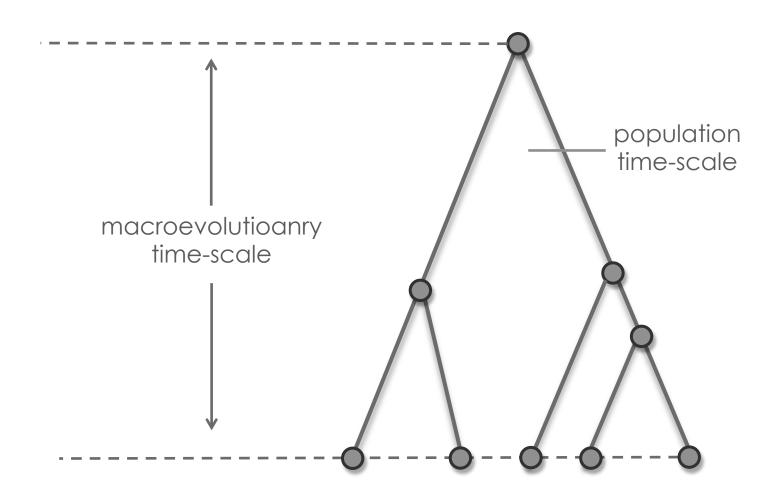
data from: Dunn, Bielawski, and Yang (2001) Genetics, 157: 295-305

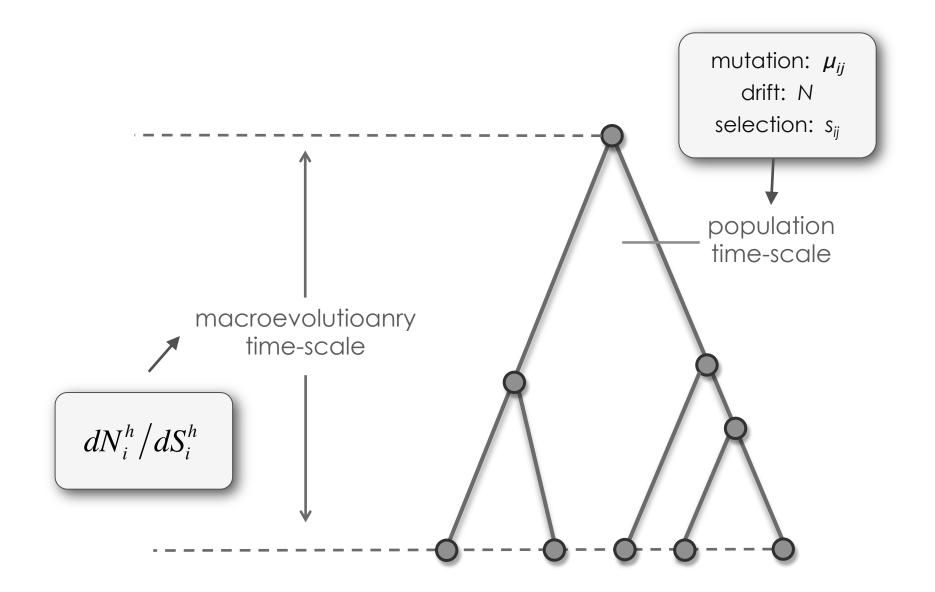
dS and dN must be corrected for BOTH the structure of genetic code and the underlying mutational process of the DNA

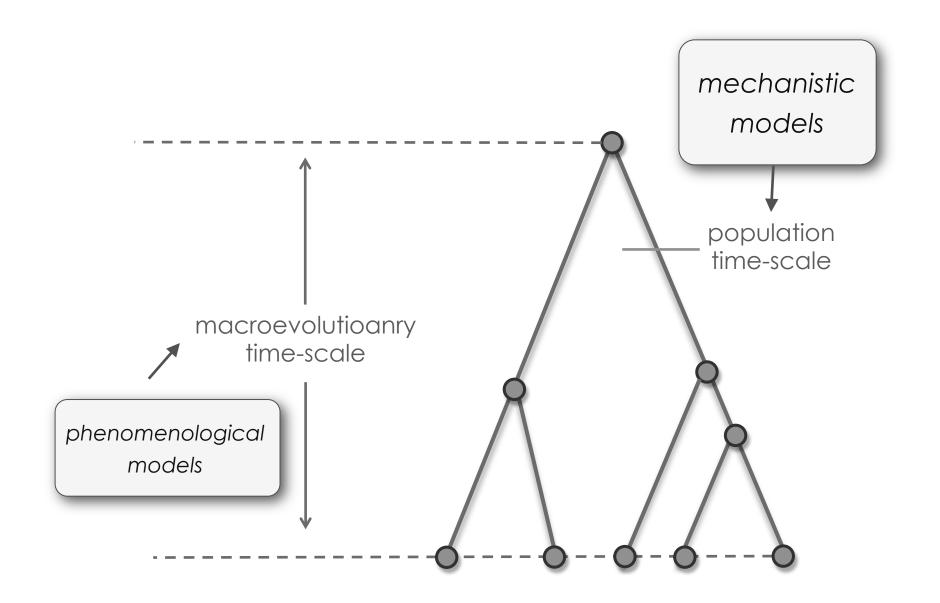
but, this can differ among lineages and genes!

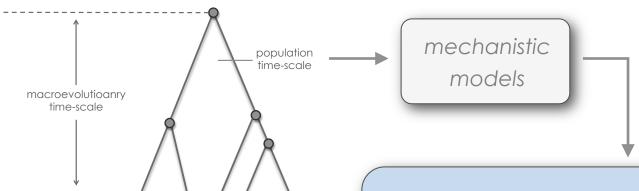
correcting dS and dN for underlying mutational process of the DNA makes them **sensitive to assumptions about the process of evolution**!

> but, the process of evolution occurs at the population genetic level (micro-evolution)









Wright-Fisher population

• drift: N

• mutation: μ

• selection: \mathbf{s}_{ij}

s_{ij} vary among sites AND amino acids

expected dN^h/dS^h

"MUTSEL MODELS"

$$\Pr = \begin{cases} \mu_{ij} N \times \frac{1}{N} = \mu_{IJ} & \text{if neutral} \\ \mu_{ij} N \times \frac{2s_{ij}}{1 - e^{-2Ns_{ij}}} & \text{if selected} \end{cases}$$

$$S_{ij} = \Delta f_{ij}$$

Halpern and Bruno (1998)

population genetics at a single codon site (h)

fitness coefficients

$$f^h = \langle f_1, \dots, f_{61} \rangle$$

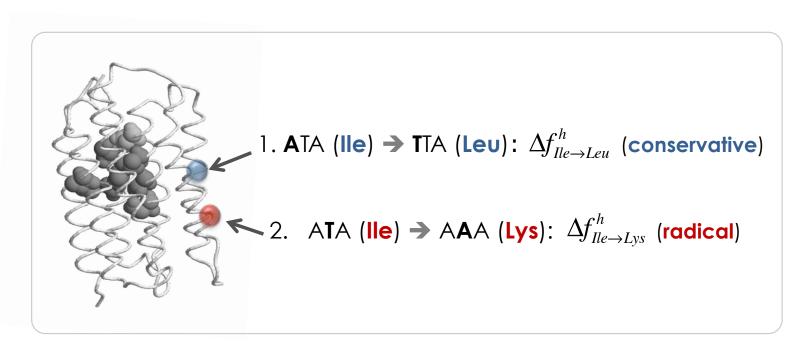
selection coefficients

$$s_{ij}^h = f_j^h - f_i^h$$

fixation probability (Kimura, 1962)

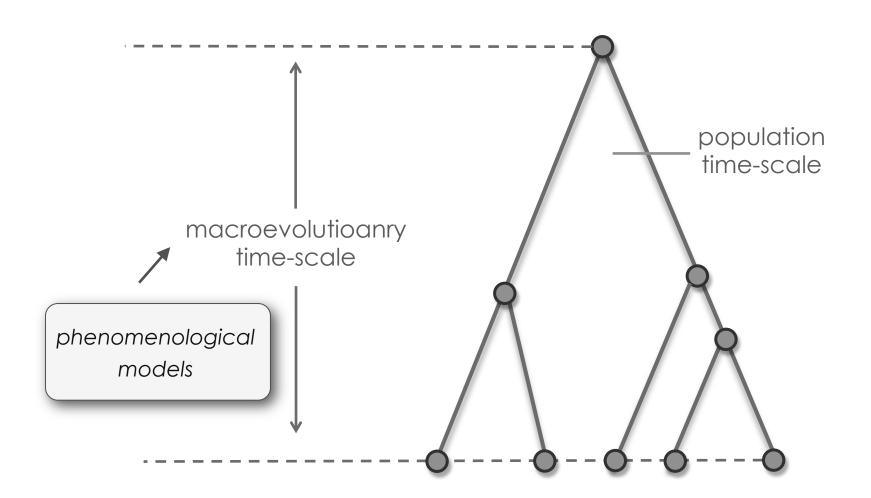
$$\Pr(s_{ij}^h) = \frac{2s_{ij}^h}{1 - e^{-2Ns_{ij}^h}}$$

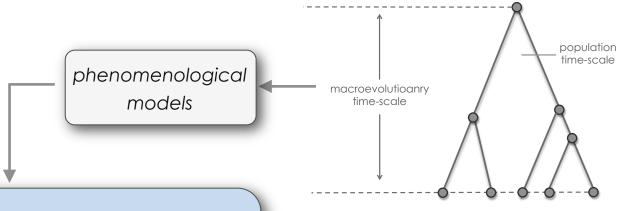
MutSel: selection favours amino acids with higher fitness (if N is large enough)



realism: fitness expected to differ among sites and amino acids according to protein function

the cost of realism: too complex to fit such a model to real data





"OMEGA MODELS"

0 if
$$i$$
 and j differ by > 1

$$\pi_j$$
 for synonymous tv.

$$\kappa\pi_i$$
 for synonymous ts.

$$\omega \pi_j$$
 for non-synonymous tv.

 $\omega \kappa \pi_i$ for non-synonymous ts.

Goldman and Yang (1994) Muse and Gaut (1994)

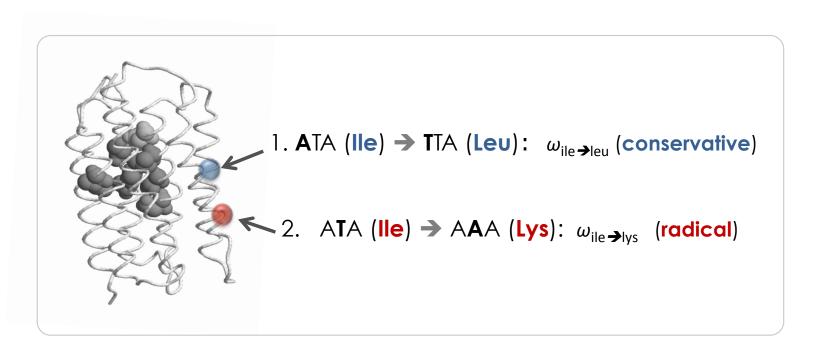
- phenomenological parameters
- ts/tv ratio: κ
- codon frequencies: π_j
- $\omega = dN/dS$
- parameter estimation via ML
- stationary process

phenomenological codon models: just a few parameters are needed to cover the 3721 transitions between codons!

			to codon below:								
From codon below:	TTT (Phe)	TTC (Phe)	TTA (Leu)	TTG (Leu)	CTT (Leu)	CTC (Leu)	…▶	GGG (Gly)			
TTT (Phe)		$\kappa\pi_{\mathrm{TTC}}$	$\omega\pi_{ ext{TTA}}$	$\omega\pi_{\mathrm{TTG}}$	$ωκπ_{TTT}$	0	•••	0			
TTC (Phe)	$\kappa\pi_{ m TTT}$		$\omega\pi_{ ext{TTA}}$	$\omega\pi_{ ext{TTG}}$	0	ωκπ _{CTC}	•••	0			
TTA (Leu)	$\omega\pi_{ m TTT}$	$\omega\pi_{\mathrm{TTC}}$			0	0	••••	0			
TTG (Leu)	$\omega\pi_{ m TTT}$	$\omega\pi_{\mathrm{TTC}}$	$\kappa\pi_{ ext{TTA}}$		0	0	•••	0			
CTT (Leu)	$ωκπ_{TTT}$	0	0	0		$\kappa\pi_{\mathrm{CTC}}$	•••	0			
CTC (Leu)	0	ωκπ _{TTC}	0	0	$\kappa\pi_{ m TTT}$		•••	0			
: ▼	<u>:</u>	:	:	<u>:</u>	.	:	*****				
GGG (Gly)	0	0	0	0	0	0	0				

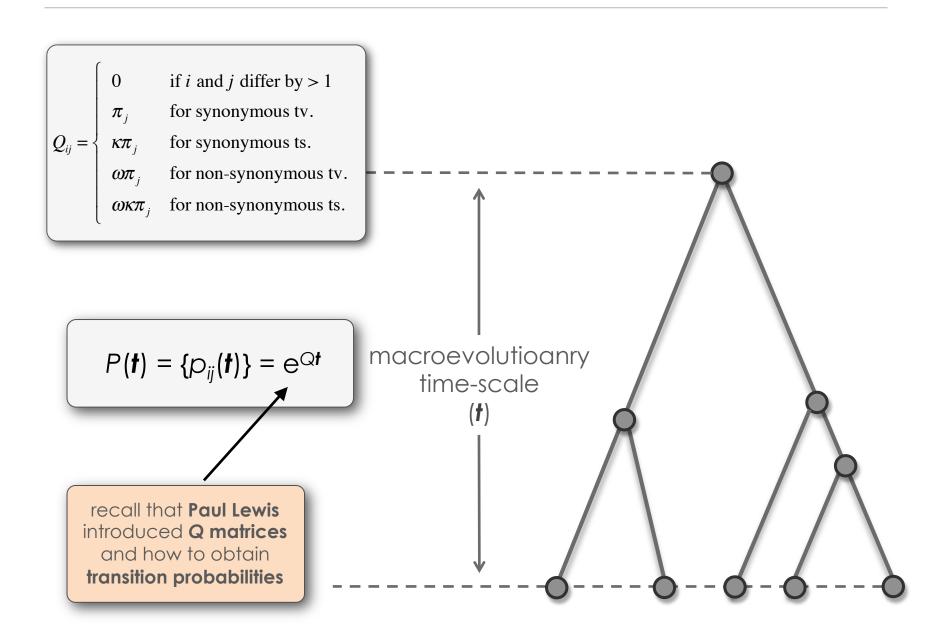
^{*} This is equivalent to the codon model of Goldman and Yang (1994). Parameter ω is the ratio $d_{\rm N}/d_{\rm S}$, κ is the transition/transversion rate ratio, and π_i is the equilibrium frequency of the target codon (i).

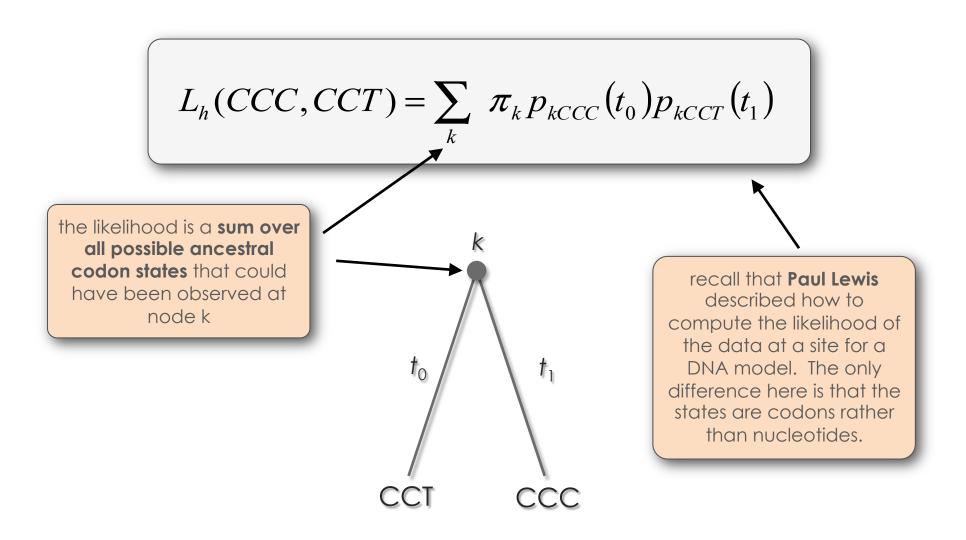
intentional simplification: all amino acid substitutions have the same ω !



contradiction? selection should favour amino acids with higher fitness.

probability of substitution between codons over time, P(t)





note: analysis is typically done by using an unrooted tree

The likelihood of observing the entire sequence alignment is the product of the probabilities at each site.

Paul Lewis
covered this with
the "AND" rule in
his likelihood
lecture.

$$L = L_1 \times L_2 \times L_3 \times \ldots \times L_N = \prod_{h=1}^{N} L_h$$

See **Paul Lewis's**lecture slides for
more about
likelihoods vs. loglikelihoods.

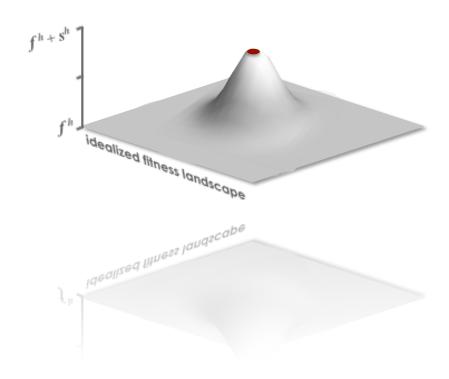
The log likelihood is a sum over all sites.

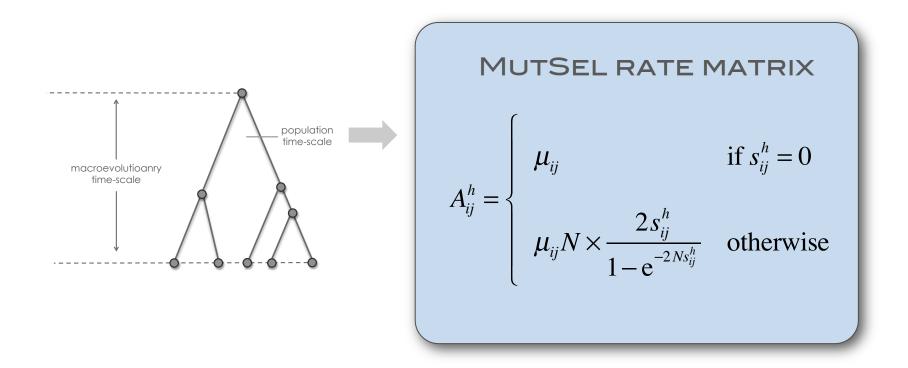
$$\ell = \ln\{L\} = \ln\{L_1\} + \ln\{L_2\} + \ln\{L_3\} + \dots + \ln\{L_N\} = \sum_{h=1}^{N} \ln\{L_h\}$$

summary

- dN/dS is a measure of selection pressure that can be connected to a mechanistic process of population genetic evolution (MutSel models)
- dN/dS can be estimated from multi-sequence alignments as a parameter (ω) in a phenomenological model of sequence evolution
- estimates of dN/dS for real data must be corrected for the underlying process of evolution for those data
- estimates of dN/dS can be sensitive to assumptions about the underlying process of evolution
- phenomenological estimates of dN/dS are highly simplistic summaries of a much more complex evolutionary process

part 2: mechanistic processes of codon evolution





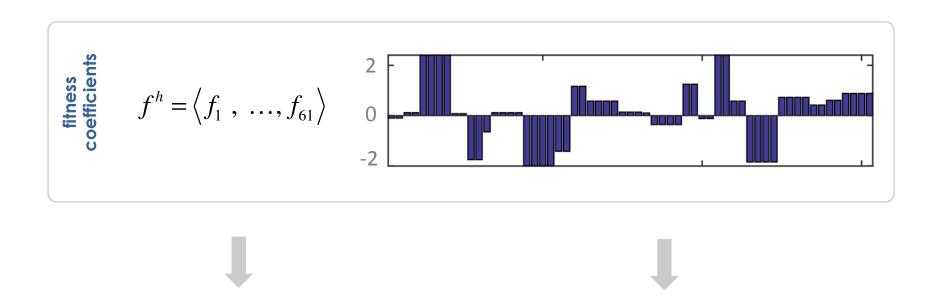
- MutSel time-scale is infinitesimal compared to substitution scale
- MutSel probabilities approximate the instantaneous site-specific rate matrix, A
- μ_{ii} = nucleotide GTR process (before the effect of selection)

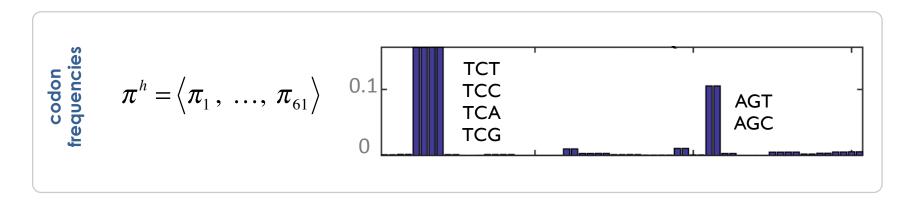
two explicit ways to reconcile **population genetics** and **macroevolution**:

1. map fitness to equilibrium frequencies

2. macroevolution index of selection intensity

fitness coefficients map to stationary codon frequencies





MUTSEL RATE MATRIX

$$\frac{dN^{h} / dS^{h}}{E[\text{drift away from equilibrium}]} = \frac{E[\text{evolution w/ selection}]}{E[\text{drift away from equilibrium set by selection}]}$$

$$dN^{h}/dS^{h} = \frac{\sum_{i \neq j} \pi_{i}^{h} A_{ij}^{h} I_{N}}{\sum_{i \neq j} \pi_{i}^{h} \mu_{ij} I_{N}}$$

- $dN/dS = \omega$ when matrix A^h is replaced by matrix Q of model M0
- dN/dS is an analog of ω under MutSel

positive selection: 3 evolutionary scenarios

frequency dependent selection

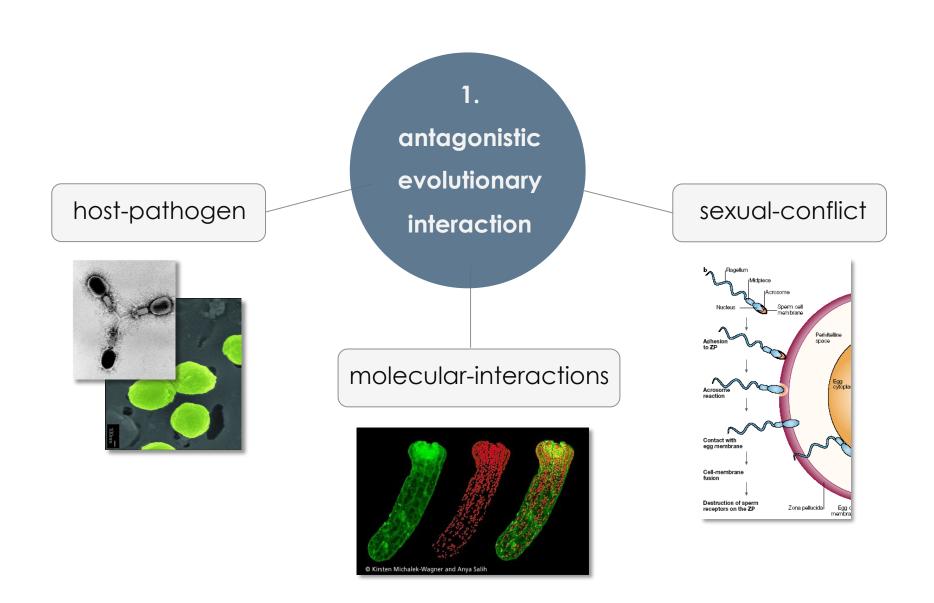
dynamic fitness landscape

2 episodic adaptation

3 shifting balance

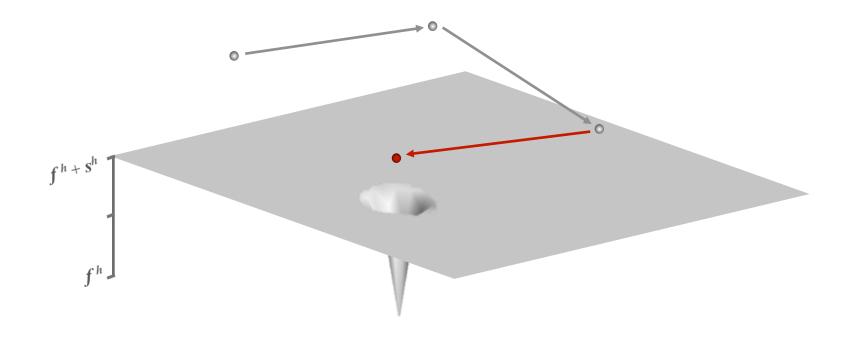
static fitness landscape

scenario 1: frequency dependent selection

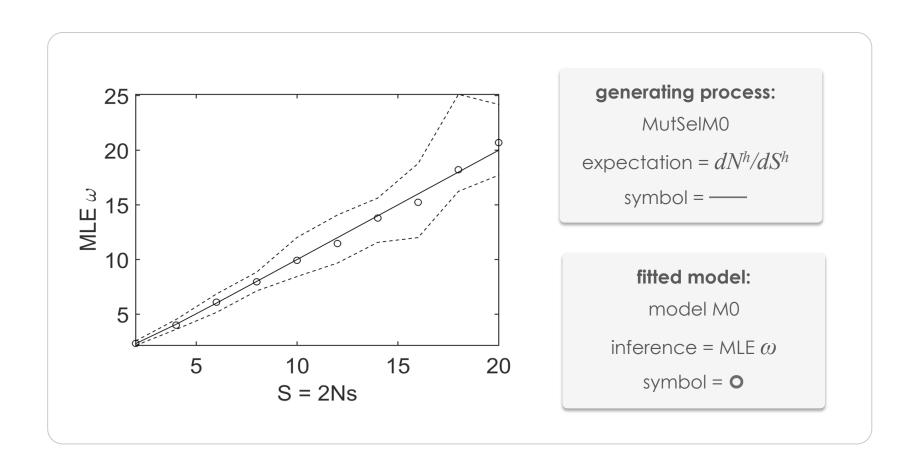


frequency-dependent selection: MutSelM0

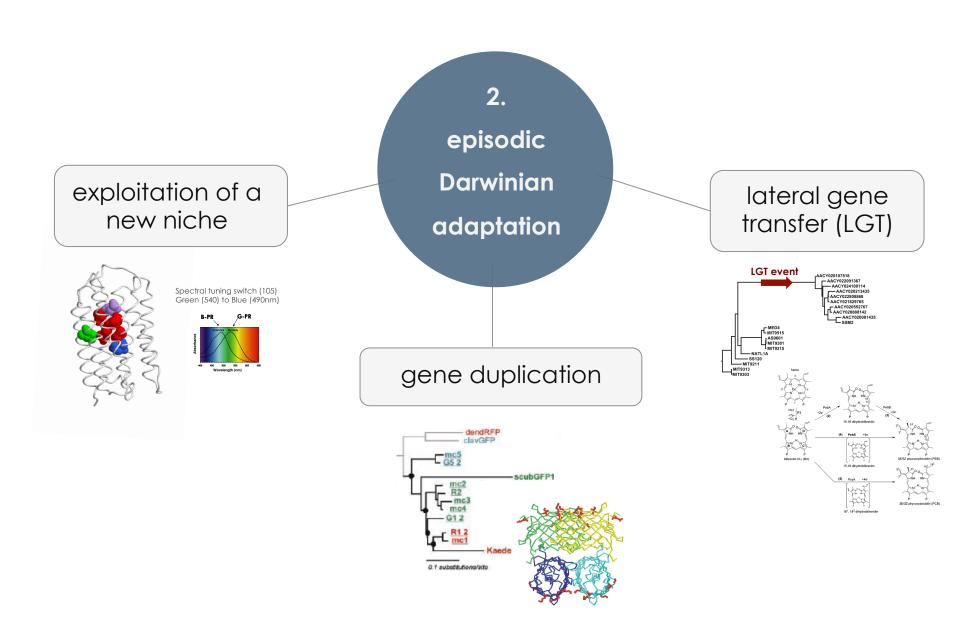
- 1. amino acid at a site has f^h ; all others have $f^h + s$
 - 2. fitness values swap when a substitution occurs



MutSelM0: (1) and (2) above imply Markov chain properties with the same rate matrix Q as **codon model M0**

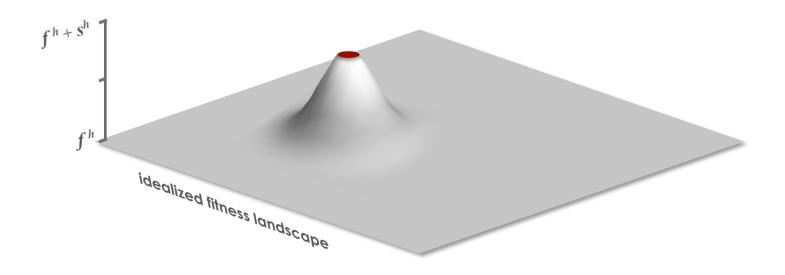


conclusion: phenomemological codon models assume frequency-dependent selection



adaptive peak shift: evolution of novel function

optimal function in a stable environment



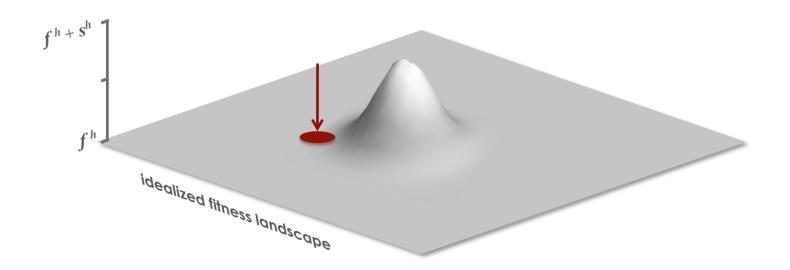
population: at fitness peak

fitness peak: stationary

FFTNS: keeps population at peak

adaptive peak shift: evolution of novel function

sub-optimal function in a novel environment



population: lower fitness

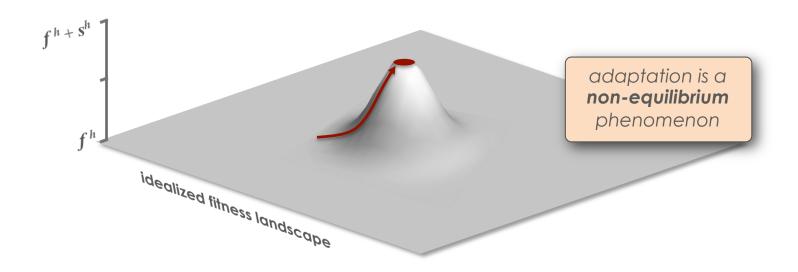
fitness peak: moving

FFTNS: increase population mean fitness

(non-stationary process)

adaptive peak shift: evolution of novel function

episodic adaptive evolution of a novel function



population: returns to peak

fitness peak: stabilized

FFTNS: increases population mean

fitness until at peak

BIOLOGY LETTERS

rsbl.royalsocietypublishing.org

Research

Cite this article: dos Reis M. 2015 How to calculate the non-synonymous to synonymous rate ratio of protein-coding genes under the Fisher – Wright mutation – selection framework. *Biol. Lett.* **11**: 20141031. http://dx.doi.org/10.1098/rsbl.2014.1031

Received: 8 December 2014 Accepted: 16 March 2015

Molecular evolution

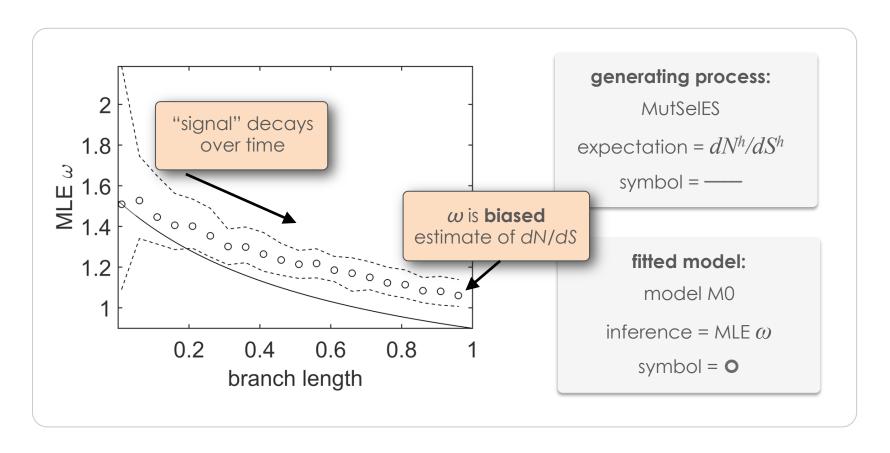
How to calculate the non-synonymous to synonymous rate ratio of protein-coding genes under the Fisher—Wright mutation—selection framework

Mario dos Reis

Department of Genetics, Evolution and Environment, University College London, Gower Street, London WC1E 6BT, UK

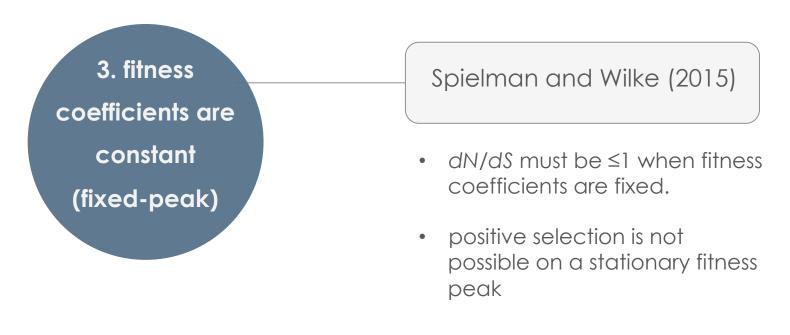
First principles of population genetics are used to obtain formulae relating the non-synonymous to synonymous substitution rate ratio to the selection coefficients acting at codon sites in protein-coding genes. Two theoretical cases are discussed and two examples from real data (a chloroplast gene and a virus polymerase) are given. The formulae give much insight into the dynamics of non-synonymous substitutions and may inform the development of methods to detect adaptive evolution.

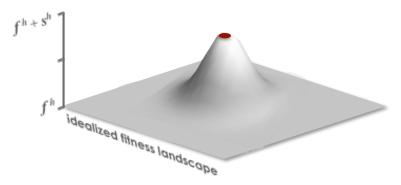
4. The non-synonymous rate during adaptive evolution

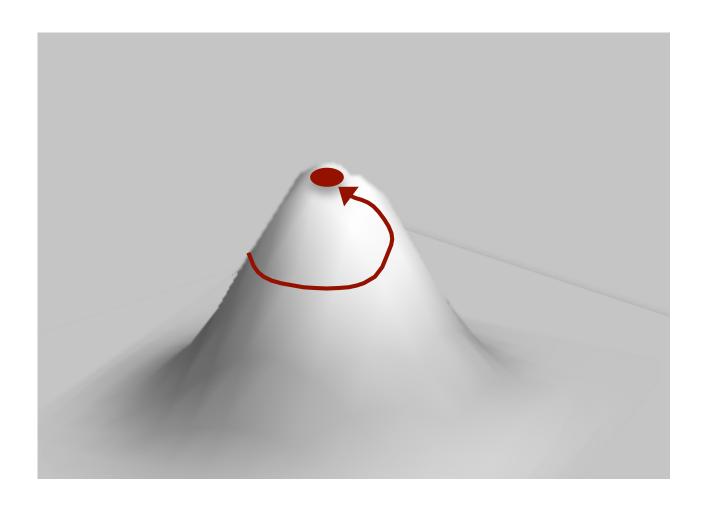


conclusion: episodic models "work" because w>1 is a consequence of a system moving towards a new fitness peak.

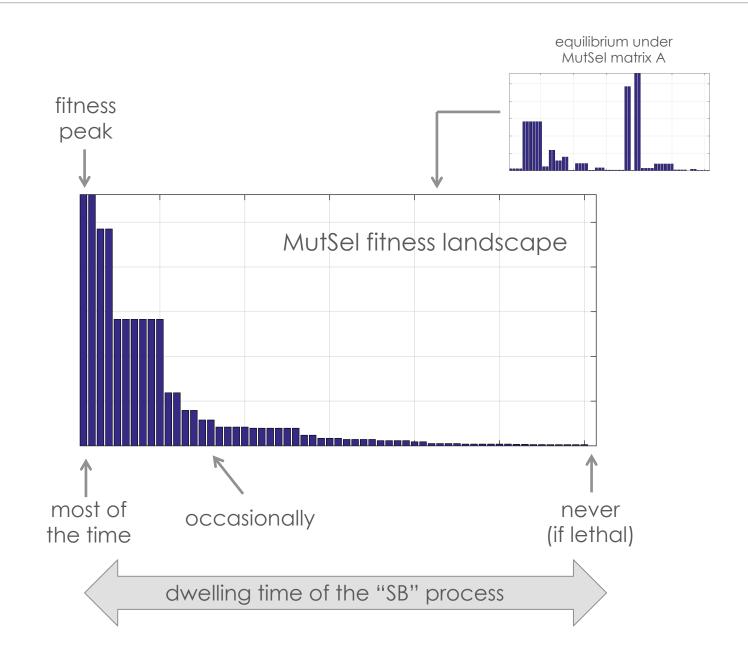
conclusion: episodic models "work" because they are sensitive to non-stationary behavior



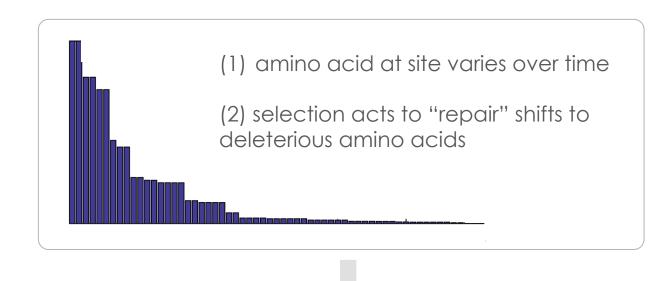




mutation and drift can move a pop. off a fitness peak



shifting balance: positive selection on a MutSel landscape

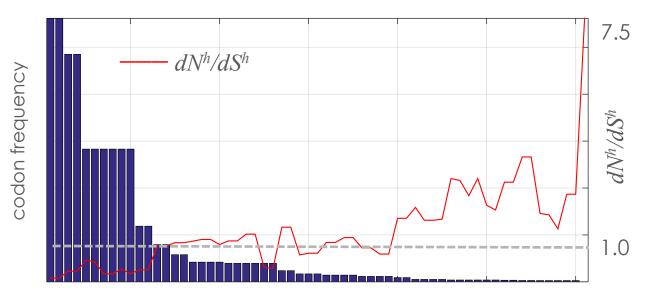


EXPECTED PROPORTION OF MUTATIONS FIXED BY SELECTION

$$p_{+}^{h} = \frac{\sum_{(i,j)} \pi_{i}^{h} (A_{ij}^{h} - \mu_{i}) I_{+}}{\sum_{i \neq j} \pi_{i}^{h} A_{ij}^{h}}$$

conclusion: $p_+ \ge 0$ as long as number of viable amino acids ≥ 1 at a site

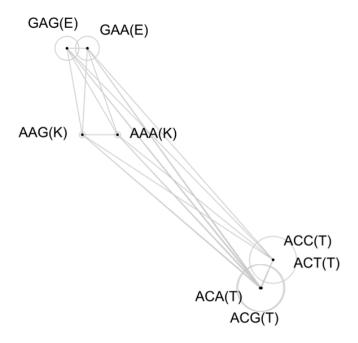
dN^h/dS^h depends on the current amino acid



temporal average dN^h/dS = 0.61

conclusion: positive selection operates on a stationary fitness peak in the same way as when there is an adaptive peak shift

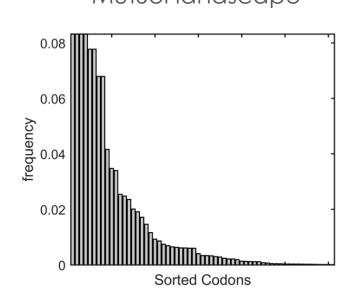
McCandlish landscape



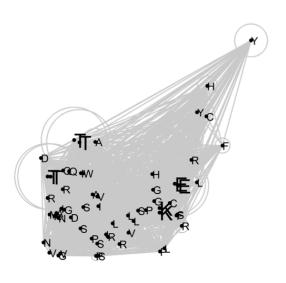
conclusion: A population can get to a sub-optimal codon (E) by drift and reside there for some time (b/c moving between T and E requires changes ≥ 2 codons).

same site... 10x decrease in N (f^h have not changed!)

MutSel landscape



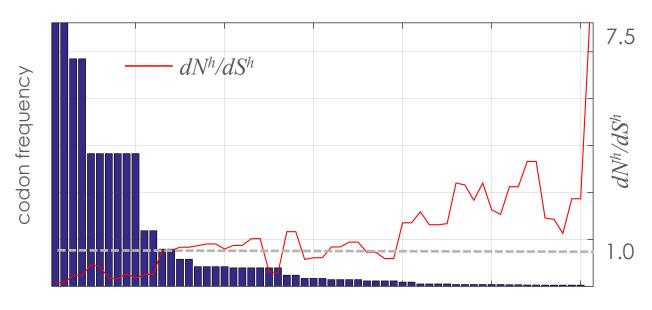
McCandlish landscape



conclusion: decreasing N changes:

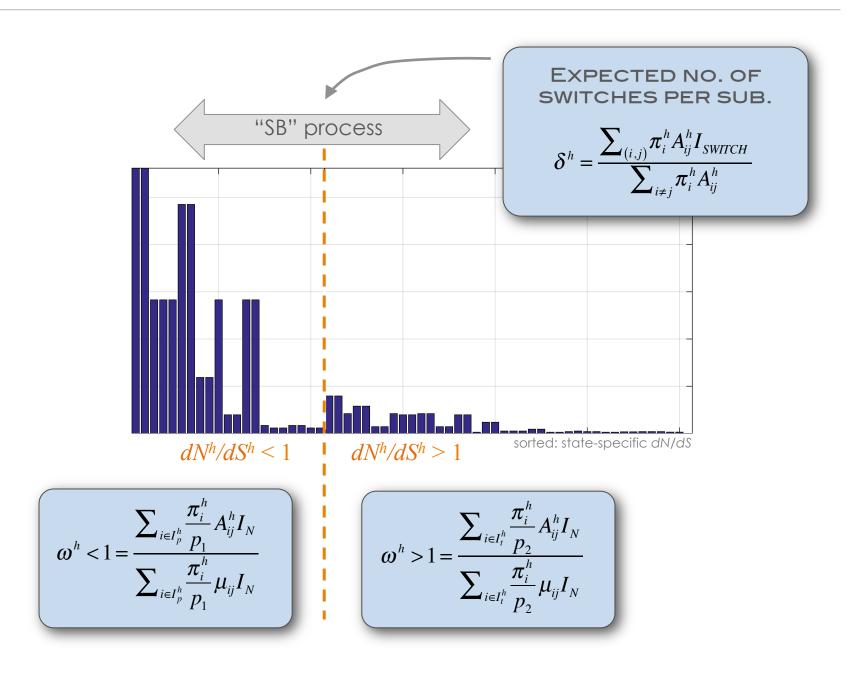
- i. the "space" for shifting balance
- ii. mean dN/dS
- iii. equilibrium frequencies

dN^h/dS^h depends on the current amino acid

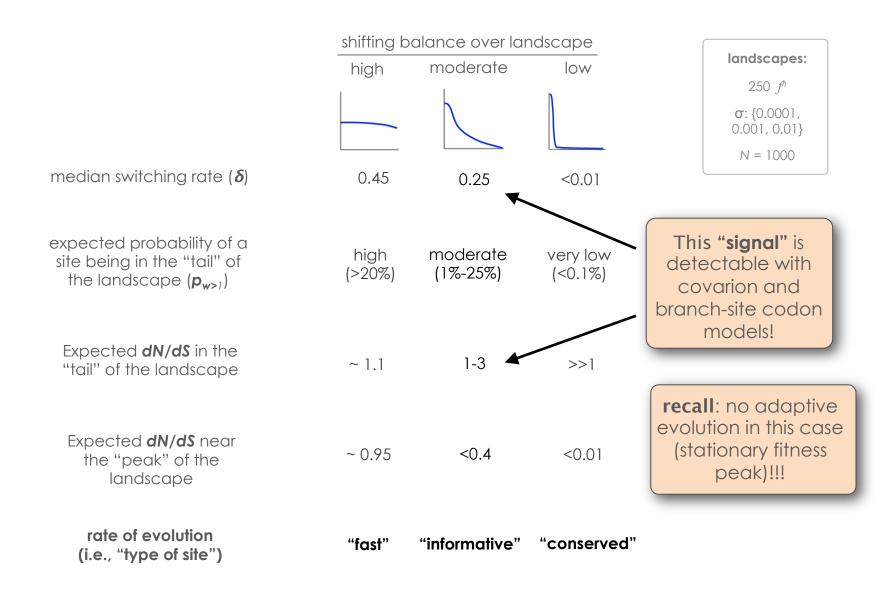


temporal average $dN^h/dS = 0.61$

shifting balance: a mechanistic model



shifting balance: a mechanistic model



summary

- standard codon models (single ω) assume frequency dependent selection, which yields a persistent dN/dS > 1
- episodic adaptive evolution leads to transient dN/dS > 1
- phenomenological codon models assume a stationary evolutionary process; adaptive evolution is non-stationary
- estimates of ω for episodic adaptive evolution are upwardly biased because adaptive evolution is non-stationary
- protein evolution on a static fitness landscape has temporal dynamics that include positive selection
- MutSel landscapes can be complex and a site can reside at a suboptimal state for extended periods of time
- rate variation among sites reflects the interplay between mutation, drift, and selection (i.e., shifting balance dynamics)