

phenomenological codon models do have many benefits:

- principled framework for statistical inference
- o avoiding ad hoc corrections of "counting" methods
- computation of transition probabilities *
- explicit use of phylogeny
- \circ model ω variation among sites
- \circ model ω variation among branches
- \circ many other kinds of models for ω

^{*} Computation of transition probabilities accomplishes, in just one step, (1) a proper correction for multiple substitutions, (2) weighting for alternative pathways between codons and (3) is the basis for estimating the values of the model parameters from the data in hand.

branch models (ω varies among branches)

site models (ω varies among sites)

variation (ω) among branches:	approach
Yang, 1998	fixed effects
Bielawski and Yang, 2003	fixed effects
Seo et al. 2004	auto-correlated rates
Kosakovsky Pond and Frost, 2005	genetic algorithm
Dutheil et al. 2012	clustering algorithm

^{*} these methods can be useful when selection pressure is strongly **episodic**


```
GTG CTG TCT CCT GCC GAC AAG ACC AAC GTC AAG GCC GCC TGG GGC AAG GTT GGC GCG CAC
... ... ... G. C ... T ... ... A... A.T ... ... AA. A.C ... AGC ...
... ... C ... G.A .AT ... ... A... AA. TG. ... G. ... A... TG. ... G. ... A... GC ...
... ... C ... GA. ... T ... ... T C... ... G.A ... AT. ... TG. ... T... G.A... GC ...
```

variation (ω) among sites:	approach
Yang and Swanson, 2002	fixed effects (ML)
Bao, Gu and Bielawski, 2006	fixed effects (ML)
Massingham and Goldman, 2005	site wise (LRT)
Kosakovsky Pond and Frost, 2005	site wise (LRT)
Nielsen and Yang, 1998	mixture model (ML)
Kosakovsky Pond, Frost and Muse, 2005	mixture model (ML)
Huelsenbeck and Dyer, 2004; Huelsenbeck et al. 2006	mixture (Bayesian)
Rubenstein et al. 2011	mixture model (ML)
Bao, Gu, Dunn and Bielawski 2008 & 2011	mixture (LiBaC/MBC)
Murell et al. 2013	mixture (Bayesian)

- useful when at some sites evolve under diversifying selection pressure over long periods of time
- this is not a comprehensive list

models for variation among branches & sites

models for variation among branches & sites

variation (ω) among branches & sites:	approach
Yang and Nielsen, 2002	fixed+mixture (ML)
Forsberg and Christiansen, 2003	fixed+mixture (ML)
Bielawski and Yang, 2004	fixed+mixture (ML)
Giundon et al., 2004	switching (ML)
Zhang et al. 2005	fixed+mixture (ML)
Kosakovsky Pond et al. 2011, 2012	full mixture (ML)

^{*} these methods can be useful when selection **pressures change over** time at just a fraction of sites

^{*}it can be a challenge to apply these methods properly (**more about this later**)

MIXTURE-MODEL LIKELIHOOD

$$P(\mathbf{x}_h) = \sum_{i=0}^{K-1} p_i P(\mathbf{x}_h \mid \boldsymbol{\omega}_i)$$

 $\omega = 0.01 \quad \omega = 0.90$

 ω for background branches are from site-classes 1 and 2 (0.01 or 0.90)

model-based inference

3 analytical tasks

task 1. parameter estimation (e.g., ω)

task 2. hypothesis testing

task 3. make predictions (e.g., sites having $\omega > 1$)

t, κ , ω = unknown constants estimated by ML

 π 's = empirical [GY: F3×4 or F61 in Lab]

use a numerical hill-climbing algorithm to maximize the likelihood function

Parameters: t and ω

Gene: acetylcholine α

receptor

lnL = -2399

task 1. parameter estimation (e.g., ω)

task 2. hypothesis testing **LRT**

task 3. prediction / site identification

 H_0 : variable selective pressure but NO positive selection (M1)

 H_1 : variable selective pressure with positive selection (M2)

Compare **2** $\Delta l = 2(l_1 - l_0)$ with a χ^2 distribution

Model 1a

$$\hat{\omega} = 0.5 \quad (\omega = 1)$$

Model 2a

$$\hat{\omega} = 0.5$$
 $(\omega = 1)$ $\hat{\omega} = 3.25$

 H_0 : Beta distributed variable selective pressure (M7)

 H_1 : Beta plus positive selection (M8)

Compare $2\Delta l = 2(l_1 - l_0)$ with a χ^2 distribution

task 1. parameter estimation (e.g., ω)

task 2. hypothesis testing 🗸

task 3. prediction / site identification **Bayes' rule**

model:

9% have $\omega > 1$

Bayes' rule: site 4, 12 & 13

structure: sites are in contact

Suppose that a population consists of 60% males and 40% females, and a disease occurs at the rate 1% in males and 0.1% in females.

Q₁: What is the probability that any individual carries the disease?

$$A_1$$
: $0.6 \times 0.01 + 0.4 \times 0.001 = 0.0064$

$$P(D) = P(M)P(D|M) + P(F)P(D|F)$$

Q₂: Given that an individual carries the disease, what is the probability that it is a male?

$$A_2$$
: 0.6 × 0.01/0.0064 = 0.94

$$P(M|D) = \frac{P(M)P(D|M)}{P(D)}$$

from Paul Lewis' lecture

Bayes' rule in statistics

1

identifying selected sites under a codon model

NOTE: The posterior probability should NOT be interpreted as a "*P*-value"; it can be interpreted as a measure of relative support, although there is rarely any attempt at "calibration".

model based inference

task 1. parameter estimation (e.g., ω)

task 2. hypothesis testing

task 3. prediction / site identification

let's put this into practice ...

colour diversity of coral pigments (GFPs)

Red/blue colour morphs of the great star coal *Montastraea cavernosa*

- o Is color diversity tuned by natural selection?
- o Is there a relationship between colour and endosymbiotic algae?

signal 2: episodic selection

See Field et al. 2006 J. Mol. Evol. 62(3):332-9 for details.

just for fun

Bacteria were engineered to express the extant and ancestral GFP-like proteins. These bacteria were then cultured in a pattern that corresponded to the GFP-LIKE gene tree.

Ugalde JA, Chang BS, Matz MV. Evolution of coral pigments recreated. Science. (2003). 305:1433.

false biological conclusions

1. codon usage 🛑

- 2. process variation among sites
- 3. process variation over time
- 4. recombination
- 5. regularity conditions not met

how to model codon frequencies?

		_				gene of <i>Drosophila</i>
						1 Cys C TGT 0
TTC	27	TCC	15	1	TAC	22 TGC 6
Leu L TTA	0	TCA	0	***	* TAA	0 *** * TGA 0
						0 Trp W TGG 8
						0 Arg R CGT 1
CTC	2	CCC	15	I	CAC	4 CGC 7
CTA	0	CCA	3	Gln	Q CAA	0 CGA 0
						14 CGG 0
						5 Ser S AGT 1
						17 AGC 4
						1 Arg R AGA 0
Met M ATG	4	ACG	4	1	AAG	37 AGG 1
						2 Gly G GGT 4
GTC	2	GCC	38		GAC	11 GGC 6
GTA	1	GCA	2	Glu	E GAA	0 GGA 11
GTG	25					30 GGG 0

how to model codon frequencies?

substitution rates are proportional to empirical frequency of:

Goldman and Yang 1994 (GY): target codon

Muse and Gaut 1994 (MG): target nucleotide

See Rodrique et al. (2008) for a comparison of GY and MG style codon models that suggests the MG style, combined with parameters for codon preferences, might be the most desirable core-model for future development.

The MutSel process (part 1) is inherently a process whereby the transition probability depends on the target nucleotide (MG).

how to model codon frequencies?

depending on the gene/ genome, the method could yield **biased estimates of dN/ dS**, See the following for cases:

- Aris-Brosou & Bielawski (2006) Gene 378: 58-64.
- Yap et al. (2010) MBE 27: 726-734.
- Spielman & Wilke (2015) MBE 32: 1097- 1108.

GY

MG

example: $A \rightarrow C$

$$AAA \rightarrow CAA$$

$$AAA \rightarrow ACA$$

$$AAA \rightarrow AAC$$

Δ at codon	position
-------------------	----------

] ST	2 nd	3 ^{ra}
π_{CAA}	π_{ACA}	π_{AAC}
π_{c}^{-1}	$\pi_{c}^{\;2}$	$\pi_{c}^{\;3}$

- 1. codon usage
- 2. process variation among sites 🛑

- 3. process variation over time
- 4. recombination
- 5. regularity conditions not met

sequence evolution is complex

codon models: biological interpretation of differences among sites in ω requires that such differences are due to selection pressure alone

process variation among sites	software & references		
synonymous ratenonsynonymous rate	several methods in: HyPhy : Kosakovsky Pond et al. (2005) Datamonkey : Delport et al. (2010)		
 baseline DNA/RNA substitution rate nonsynonymous rate 	MultiLayer: Rubinstein et al. (2011)		
 baseline DNA/RNA substitution rate transition/transversion ratio codon frequencies nonsynonymous rate 	several studies show false signal for dN/dS > 1 is possible when process variation among sites in inadequately modeled		

- 1. codon usage
- 2. process varies among sites
- 3. process varies over time
- 4. recombination
- 5. regularity conditions not met

- 1. codon usage
- 2. variation among sites
- 3. variation over time
- 4. recombination 🛑

5. regularity conditions not met

recombination

Note: Recombination adds among site variation relative to <u>both</u> process and phylogeny! See Sullivan et al. 2006 PLoS Biology 4: e234 for details.

- 1. codon usage
- 2. variation among sites
- 3. variation over time
- 4. recombination
- 5. regularity conditions not met

Normal MLE uncertainty (M2a)

- large sample size with regularity conditions
- MLEs approximately unbiased and minimum variance

$$\hat{ heta} \sim N\Big(heta, I\Big(\hat{ heta}\Big)^{-1}\Big)$$

MLE instabilities (M2a)

- small sample sizes and $oldsymbol{ heta}$ on boundary
- continuous θ has been discretized (e.g., M2a)
- non-Gaussian, over-dispersed, divergence among datasets

best practices

best practices in evolutionary surveys

- 1. processing and Q.C. (in large scale surveys)
- 2. alignment (independent evaluations)
- 3. recombination
- 4. robustness: MG vs GY style codon model
- 5. robustness: alternative tree topologies
- 6. robustness: variation in baseline DNA/RNA rates
- 7. bootstrapping

for discussion of best practices in large scale gene surveys see:

- Baker et al. (2016) Genetics, 203:905-22
- Bielawski et al. (2016) Curr. Protoc. Bioinf., 56: Unit 6.15

nuclear receptor NR1D1: positive selection along human lineage?

What are the next steps in codon models?

 applications of the MutSel framework

- Tamuri AU et al. (2014) Genetics 197:257
- Tamuri et al. (2012) Genetics 190:1101
- Yang Z & Nielsen R. (2008) Mol Biol Evol. 25:568
- Nielsen & Yang Z. (2003) Mol Biol Evol 20:1231

joint modeling of genotype & phenotype

- Nabholz et al. (2013) Genome Biol Evol 5:1273
- Lartillot & Delsuc (2012) Evolution 66:1773
- Lartillot & Poujol (2011) Mol Biol Evol. 28:729

#