part 3: analysis of natural selection pressure
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markov models are good

phenomenological codon models do have many benefits:

o principled framework for statistical inference

o avoiding ad hoc corrections of “counting” methods
o computation of fransition probabilities *

o explicit use of phylogeny

o model w variation among sites

o model w variation among branches

o many other kinds of models for w

* Computation of transition probabilities accomplishes, in just one step, (1) a proper correction for
mulfiple substitutions, (2) weighting for alternative pathways between codons and (3) is the basis for
estimating the values of the model parameters from the data in hand.



two basic types of models
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branch models*™

Yang, 1998 fixed effects
Bielawski and Yang, 2003 fixed effects

Seo et al. 2004 auto-correlated rafes
Kosakovsky Pond and Frost, 2005 genetic algorithm
Dutheil et al. 2012 clustering algorithm

" these methods can be useful when selection pressure is strongly episodic



interpretation of a branch model

episodic adaptive
evolution of a novel
function with w; > 1



site models*™
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variofion(w) amongshes:  eppeoch
Yang and Swanson, 2002 fixed effects (ML)
Bao, Gu and Bielawski, 2006 fixed effects (ML)
Massingham and Goldman, 2005 site wise (LRT)
Kosakovsky Pond and Frost, 2005 site wise (LRT)
Nielsen and Yang, 1998 mixture model (ML)
Kosakovsky Pond, Frost and Muse, 2005 mixture model (ML)
Huelsenbeck and Dyer, 2004; Huelsenbeck et al. 2006 mixture (Bayesian)
Rubenstein et al. 2011 mixture model (ML)
Bao, Gu, Dunn and Bielawski 2008 & 2011 mixture (LIBaC/MBC)
Murell et al. 2013 mixture (Bayesian)

» useful when at some sites evolve under diversifying selection pressure over long periods of time

* this is not a comprehensive list



site models: discrete model (M3)
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MIXTURE-MODEL LIKELIHOOD

conditional likelihood
calculation (see part 1)
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interpretation of a sites-model
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models for variation among branches & sites
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branch-site models
(combines the features of above models)



models for variation among branches & sites

Yang and Nielsen, 2002 fixed+mixture (ML)
Forsberg and Christiansen, 2003 fixed+mixture (ML)
Bielawski and Yang, 2004 fixed+mixture (ML)
Giundon et al., 2004 switching (ML)
Zhang et al. 2005 fixed+mixture (ML)
Kosakovsky Pond et al. 2011, 2012 full mixture (ML)

"these methods can be useful when selection pressures change over
time at just a fraction of sites

"it can be a challenge to apply these methods properly (more about
this later)



branch-site “Model B”
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MIXTURE-MODEL LIKELIHOOD
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) =

5.55

w for background branches
are from site-classes 1 and 2

(0.01 or 0.90)



two scenarios can yield branch-sites with dN/dS > 1

% of sites

[

Foreground (FG)

branch only

{f

@®=001 w=0.90

wm- 5.55

10% of sites have
shifting balance on

a fixed peak
(same function)

episodic adaptive
evolution at 10% of
sites for novel function

branch-site codon
models cannot tell
which scenario is
correct without
external information!

Jones et al (2016)
submitted: MBE




model-based inference



model based inference

3 analytical tasks

task 1. parameter estimation (e.g., w) 4
task 2. hypothesis testing

task 3. make predictions (e.g., sites having w> 1)



task 1: parameter estimation

t, K, w = unknown constants estimated by ML

t's = empirical [GY: F3x4 or F61 In Lab]

use a numerical hill-climbing algorithm to
maximize the likelihood function



task 1: parameter estimation

p
Parameters: f and w
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task 2: statistical significance

task 1. parameter estimation (e.g., w) ¢

task 2. hypothesis testing <4 LRT

task 3. prediction / site identification



task 2: likelihood ratio test for positive selection

4 )
H,: variable selective pressure but NO posifive selection (M1)

H,: variable selective pressure with positive selection (M2)

Compare 24l = 2(l, - I,) with a x? distribution
o V.

Model 1a Model 2a

@ =0.5 (w=1) @ =3.25



task 2: likelihood ratio test for positive selection

4 )

H,: Beta distributed variable selecftive pressure (M7)
H,: Beta plus posifive selection (M8)

Compare 24l = 2(l, - I,) with a x? distribution

.

M7: beta M8: beta & w
14 14
— — ..

0 020406081 0 02040608 1 >1

w ratio w ratio



task 3: identify the selected sites

task 1. parameter estimation (e.g., w) ¢

task 2. hypothesis testing ¢

task 3. prediction / site identification 4mmBayes' rule



task 3: which sites have dN/dS > 1

model:
9% have w > 1

Bayes’ rule:
site 4, 12 & 13

structure:
sites are in contact
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Bayes’ rule: yet another (silly) example

Suppose that a population consists of 60% males and 40%
females, and a disease occurs at the rate 1% in males and
0.1% in females.

Q,: What is the probability that any
individual carries the disease?

A;: 0.6 x0.01 +0.4 x0.001 =0.0064

P(D) = P(M)P(D|M) + P(F)P(D|F)

See Yang and Bielawski (2000) TREE 15:496-503 for a detailed presentation of this example



Bayes’ rule: yet another (silly) example

Q,: Given that an individual carries the disease,
what is the probability that it is a male?

A, 0.6 x 0.01/0.0064 = 0.94

P(M) P(DIM)
P(D)

P(M|D) =

See Yang and Bielawski (2000) TREE 15:496-503 for a detailed presentation of this example



from Paul Lewis' lecture ....

Bayes’ rule in statistics

Likelihood of hypothesis 6 Prior probability of hypothesis 6

N\

Pr(D|0) Pr(0)
>_o Pr(D|0) Pr(0)

N\

. N Marginal probability
Posterior probability of the data (marginalizing
of hypothesis 6 over hypotheses)

Pr(4|D) =



1. analyfical task-3
identifying selected sites under a codon model

-

P(x,) =Y, p@)P(x,|0,)

f ! f

Total Prior Likelihood
probability

w,=0.03 =040 w,=14.1
p,=0.85 p,=0.10 p,=0.05



Bayes’ rule for identifying selected sites

~
[ Site class 0: w, = .03, 85% of codon sites
B Site class 1: w, = .40, 10% of codon sites
? B Site class 2: w, =14, 05% of codon sites
y
Prior probability of hypothesis (w,) Likelihood of hypothesis (w,)

~_ /

P(w, | x,) = P(a)z)P(xh Ia)z)

K-1

> P(w)P(x, | w,)

Posterior prc?bability of Marginal probability (Total
hypothesis (w,) probability) of the data



Posterior probability

e
N

task 3: Bayes rule for which sites have dN/dS > 1

Rapidly evolving region Conserved region
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6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 8 91 96 101 106 111 116 121 126 131 136 141 146 151 156 161 166 171 176 181 186 191 196 201

[] Site class 0: w, =.03 (strong purifying selection)

B Site class 1: w, =.40 (weak purifying selection)

Bl Ssite class 2: w, = 14 (positive selection)

NOTE: The posterior probability should NOT be interpreted as a “P-value”; it can be interpreted
as a measure of relative support, although there is rarely any attempt at “calibration”.



task 3: Bayes rule for which sites have dN/dS > 1

1 Bayes' rule

empirical Bayes

1

NEB

p

Naive Empirical Bayes

* Nielsen and Yang, 1998

e assumes no MLE errors

I

/
Bayes Empirical Bayes

* Yang et al., 2005

e accommodate MLE errors
for some model parameters
via uniform priors

|

booftstrap

SBA

Smoothed bootstrap
aggregation

* Mingrone et al., MBE,
under review

e accommodate MLE errors
via bootstrapping

e ameliorates biases and
MLE instabilities with kernel
smoothing and aggregation




model based inference

task 1. parameter estimation (e.g., w)
task 2. hypothesis testing

task 3. prediction / site identification

let’s put this into practice ...



example analysis (& experimental validation)



colour diversity of coral pigments (GFPs)

@ Kirsten Michalek-Wagner and Anya Salih

Red/blue colour morphs of the great
star coal Montastraea cavernosa

dendRFP
lavGFP

scubGFP1

o Is color diversity tuned by natural selection?

o Is there a relationship between colour and endosymbiotic algae?

See Field et al. 2006 J. Mol. Evol. 62(3):332-9 for details.



signal 1: long term (diversifying) selection

1,
0.8

Bayes’ rule:

0.6 A
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0.4 - ] lgg}ggﬁgrr? P((Uz | X,) = pZPP(ZC; l)wZ) = K£2P(xh I(UZ)
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sites in red correspond to the protein-
binding region of non-colored homologs
of these GFP proteins

See Field et al. 2006 J. Mol. Evol. 62(3):332-9 for details.



signal 2: episodic selection

Baye'’s rule:

P(,|x,) = 1’2’;()‘; @) _ Ksz(xh |o,)
! 2pip(xh |wi)
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just for fun ....

scubGFP1

Bacteria were engineered to
express the extant and ancestral
GFP-like proteins. These bacteria
were then cultured in a pattern
that corresponded to the GFP-LIKE
gene tfree.

Ugalde JA, Chang BS, Matz MV.
Evolution of coral pigments recreated.
Science. (2003). 305:1433.



false biological conclusions



false biological conclusions

1. codon usage «

2. process variation among sites
3. process variation over time
4. recombination

5. regularity conditions not met



how to model codon frequencies?

Sums of codon usage counts the GstD gene of Drosophila

Phe F TTT 0 | Ser S TCT 0 | Tyr Y TAT 1 | Cys C TGT 0
TTC 27 | TCC 15 | TAC 22 | TGC 6
Leu L TTA 0 | TCA 0 | *** * TAA 0 | *** * TGA 0
TTG 1 | TCG 1| TAG 0 | Trp W TGG 8
Leu L CTT 2 | Pro P CCT 1 | His H CAT 0 | Arg R CGT 1
CTC 2 | CccC 15 | CAC 4 | CGC 7
CTA 0 | CCA 3 | Gln Q CAA 0 | CGA 0
CTG 29 | CCG 1 | CAG 14 | CGG 0
Ile I ATT 4 | Thr T ACT 2 | Asn N AAT 5 | Ser S AGT 1
ATC 12 | ACC 11 | AAC 17 | AGC 4
ATA 0 | ACA 2 | Lys K AAA 1 | Arg R AGA 0
Met M ATG 4 | ACG 4 | AAG 37 | AGG 1
Val V GTT 0 | Ala A GCT 0 | Asp D GAT 2 | Gly G GGT
GTC 2 | GCC 38 | GAC 11 | GGC 6
GTA 1 | GCA 2 | Glu E GAA 0 | GGA 11

GTG 25 | GCG 3 | GAG 30 | GGG 0



how to model codon frequencies?

substitution rates are proportional
to empirical frequency of:

Goldman and Yang 1994 (GY). target codon

Muse and Gaut 1994 (MG): target nucleotide

See Rodrique et al. (2008) for a comparison of GY and MG style codon models that suggests the MG
style, combined with parameters for codon preferences, might be the most desirable core-model for

future development.

The MutSel process (part 1) is inherently a process whereby the transition probability depends on the
target nucleotide (MG).



how to model codon frequencies?

example: A— C

4 , AAA — CAA
depending on the gene/
genome, the method could N
yield biased estimates of dN/ AAA ACA
ds, See the following for cases: AAA — AAC

» Aris-Brosou & Bielawski (2006) Gene
378: 58-64.
* Yap et al. (2010) MBE 27: 726-734.

+ Spielman & Wilke (2015) MBE 32:
1097- 1108.

A at codon position

1 st 2nd 3rd

GY TTcan TTaca TTanC

1 2 3
MG TTc TTc TTc




false biological conclusions

1. codon usage

2. process variation among sites «
3. process variation over time

4. recombination

5. regularity conditions not met



sequence evolution is complex

loop structures extend into Wan 7T Kn C
extra-cellular space: Hydrophilic 00 ™0 ™0
amino acids here

—

\

cell membrane in grey; helix
> structures span the membrane: a)l 71'1 ]{1 cl
Hydrophobic amino acids here

/

loop structures extend into

cytoplasm: Hydrophilic amino
acids here w2 L) k‘2 Cz

codon models: biological interpretation of differences among sites in
w requires that such differences are due to selection pressure alone

GY-type codon models: variable w’s + ¢'s among sites = variable d,, & d; among sites



modeling process variation among sites

* Synonymous rate several methods in:
* nonsynonymous rate HyPhy: Kosakovsky Pond et al. (2005)
Datamonkey: Delport et al. (2010)

« baseline DNA/RNA substitution rate  MultiLayer: Rubinstein et al. (2011)
* NoONsynonymous rate

« baseline DNA/RNA substitution rate  LiBaC: Bao et al. (2008)

« fransition/transversion ratio T
« codon frequencies 4
* Nnonsynonymous rate several studies show false signal

for dN/dS > 1 is possible when

" process variation among sites in
inadequately modeled




false biological conclusions

1. codon usage

2. process varies among sites
3. process varies over time 4
4. recombination

5. regularity conditions not met



non-stationary codon frequencies

false signal for dN/dS > 1 is
possible when codon
frequencies change over time
(non-stationarity). See Bay and
Bielawski (2013) JME 76:205-15.

HL adapted
Prochlorococcus

GC =29%

LL adapted
Prochlorococcus

GC =45%




false biological conclusions

1. codon usage

2. variation among sites
3. variation over fime

4. recombination 4

5. regularity conditions not met



recombination

. A
high levels of UGG
recombination can yield om
false signal for dN/dS > 1 Prochlorococcus + Prochlorococcus myoviruses 2:

via the LRT. see ... L - o [~

| 044

* Anisimova, et al. (2003) ’uochlorococcus
Genetics, 164:1229-1236.
« Shriner et al. (2003) Genet.
Res. 81:115-121

synd_8012(8) |
S-BM4_7803(7) 1|
S-PM2_7803(S)
S-SM1_8501(S) |}
S-SSM3_8018(8) '
$yn33_7803(8) |
P-SSM1_9303(P) *
S-WHM1_7803(8)

ProMITS303
ProMIT9313 |

for a nice solution see:
Scheffler et al. (2006)

Bioinformatics,
22:2493-2499.

%G+C color scale

Note: Recombination adds among site variation relative to both process and
phylogeny! See Sullivan et al. 2006 PLoS Biology 4: €234 for details.



false biological conclusions

1. codon usage

2. variation among sites
3. variation over time

4. recombination

5. regularity conditions not met ﬁ



regularity conditions have been met

-

Normal MLE uncertainty (M2a)

» large sample size with regularity
conditions

* MLEs approximately unbiased and
minimum variance

6 ~ N(H,I(é)_l)



regularity conditions have NOT been met

bootstrapping can be
used to diagnose this
/ problem:

[ S
(s=)

150
|

Bielawski et al. (2016)
Curr. Protoc. Bioinf.
56:6.15.

100
1

Mingrone et al., MBE,
S under review

50

MLE instabilities (M2a)
« small sample sizes and € on boundary

« continuous & has been discretized (e.g.,
M2a)

« non-Gaussian, over-dispersed, divergence
among datasets



best practices



best practices in evolutionary surveys

1. processing and Q.C. (in large scale surveys)
alignment (independent evaluations)
recombination

robustness: MG vs GY style codon model
robustness: alternative tree topologies

robustness: variation in baseline DNA/RNA rates

N S Ok

bootstrapping

p
for discussion of best practices in large scale gene surveys see:

« Baker et al. (2016) Genetics, 203:905-22
» Bielawski et al. (2016) Curr. Protoc. Bioinf., 56: Unit 6.15




nuclear receptor NRI1ID1: positive selection along human lineage ¢

1. alignment (independent evaluations) ¢/ Human
Chimpanzee
2. recombination v Gorilla
Orangutan
3. robustness: MG vs GY v Baboon
Macaque
4. robustness: tree topologies v/ Marmoset
Bushbaby
5. robustness: baseline DNA/RNA [
Mouse
6.

boofstrapping ?Zi
Lnstabilities tn KEY

V the MLEs Wy - Wnrammal
WeA - WereatApe
Wy - wHuman—Chimpanzee
WH - WhHyman

0 0.05 0.1 0.15 0.2 0.25
p

Density

FG



What are the next steps in codon models?



What are the next steps in codon modelse

/'

applications of the
MutSel framework

joint modeling of
genotype &
phenotype

Tamuri AU et al. (2014) Genetics 197:257
Tamuri et al. (2012) Genetics 190:1101

Yang Z & Nielsen R. (2008) Mol Biol Evol. 25:568
Nielsen & Yang Z. (2003) Mol Biol Evol 20:1231

~

-

\

Nabholz et al. (2013) Genome Biol Evol 5:1273
Lartillot & Delsuc (2012) Evolution 66:1773
Lartillot & Poujol (2011) Mol Biol Evol. 28:729







