part 3: analysis of natural selection pressure

\ L

types of codon models

“OMEGA MODELS”

0 if i and j differ by > 1
; for synonymous tv.
0O, =1 km, forsynonymous ts.

g

Kz, for non-synonymous ts.

Goldman and Yang (1994)
Muse and Gaut (1994)

. for non-synonymous tv.
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this codon model “M0”

“OMEGA MODELS”

0 if i and j differ by > 1
b for synonymous tv.
Q; =1 kr; forsynonymous ts.

wor;  for non-synonymous tv.

wkr;  for non-synonymous ts.

Goldman and Yang (1994)
Muse and Gaut (1994)

X4

tewy

I
GTG CTG TCT CCT GCC GAC AAG ACC AAC GTC AAG GCC GCC TGG GGC AAG GTT

1

N
.G . A..
T . G
same w same w
for all branches for all sites
two basic types of models
X X4 W, Wy w, Wy W,

1
N ! \

Hiwy tew, U UL
GTG CTG TCT CCT GCC GAC AAG ACC AAC GTC AAG GCC GCC TGG GGC AAG GTT
Caml U aa Al
AA. TG. G A
AT. T ... .. G
branch models site models
(w varies among (w varies among sites)
branches)

19-08-09



interpretation of a branch model

X4

tiwy

episodic adaptive
evolution of a novel
function with w; > 1

branch models*

X X4

Hiwg tiwy

Yang, 1998 fixed effects
Bielawski and Yang, 2003 fixed effects

Seo et al. 2004 auto-correlated rates
Kosakovsky Pond and Frost, 2005 genetic algorithm
Dutheil et al. 2012 clustering algorithm

" these methods can be useful when selection pressure is strongly episodic
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site models*

GTG CTG TCT [CCT| GCC GAC AAG ACC AAC GTC AAG GCC |GCC TGG GGC AAG GTT GGC GCG CAC

.. ... .GCA..
AT ... ... .AA ... AC ... AGC ...
.®. ... ..G ... A.. ..T .GC ..T
L.AT. ... LT ... .. G ..A .GC ...

Yang and Swanson, 2002 fixed effects (ML)
Bao, Gu and Bielawski, 2006 fixed effects (ML)
Massingham and Goldman, 2005 site wise (LRT)
Kosakovsky Pond and Frost, 2005 site wise (LRT)
Nielsen and Yang, 1998 mixture model (ML)
Kosakovsky Pond, Frost and Muse, 2005 mixture model (ML)
Huelsenbeck and Dyer, 2004; Huelsenbeck et al. 2006 mixture (Bayesian)
Rubenstein et al. 2011 mixture model (ML)
Bao, Gu, Dunn and Bielawski 2008 & 2011 mixture (LiBaC/MBC)
Murell et al. 2013 mixture (Bayesian)

« useful when at some sites evolve under diversifying selection pressure over long periods of time

« this is not a comprehensive list

site models: discrete model (M3)

MIXTURE-MODEL LIKELIHOOD

P(Xh)=§ pP(x, lwi)

1

conditional likelihood
calculation (see part 1)

0,=001 ®=10 w,=20
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interpretation of a sites-model

o4 [ 5% of|sites
SN
- diversifying selection

(frequency dependent)

at 5% of sites with
w, =2
®,=0.01 w=10{ W,=20 X

./c\

models for variation among branches & sites

Wy Wy W Wo W
L L 1
r Vo vy 1
GTG CTG TCT CCT GCC GAC AAG ACC AAC GTC AAG GCC GCC TGG GGC AAG GTT

.. .. S . .T ... .. ... A.. ...AT ... ... .AA ... AC
..C ... G.A AT ... .. .. ... A.. ... A TG. ... ..G ... A..
..C ..GBGA. ..T ... ... .. ..G ..A ... AT. ... ..T ... ..G
branch models site models
(w varies among (w varies among sites)

branches)

branch-site models
(combines the features of above models)
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models for variation among branches & sites

Yang and Nielsen, 2002 fixed+mixture (ML)
Forsberg and Christiansen, 2003 fixed+mixture (ML)
Bielawski and Yang, 2004 fixed+mixture (ML)
Giundon et al., 2004 covarion-like (ML)
Zhang et al. 2005 fixed+mixture (ML)
Kosakovsky Pond et al. 2011, 2012 full mixture (ML)

Jones et al., 2016, 2018 covarion-like (ML)

“these methods can be useful when selection pressures change over
time at just a fraction of sites

“it can be a challenge to apply these methods properly (more about
this later)

branch-site “Model B”

MIXTURE-MODEL LIKELIHOOD

P(x)=Y, PP, |@)

Foreground

@®=0.01 ©=0.90 @ =555
w for background branches
are from site-classes 1 and 2
(0.01 or 0.90)
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two scenarios can yield branch-sites with dN/dS > 1

s )
04

03 Foreground (FG)
0z ranch only

10% of sites have )
shifting balance on < >
a fixed peak \
(same function) J

®=001 =090 0,;=555

N/
4 N
branch-site codon
Epizodiciadaptive models cannot tell
evolution at 10% of A s e
sites for novel function which scenario is
correct without
\ external information!
} J Jones et al (2016) MBE
” . Jones et al (2018) MBE
. \_ 4

“OMEGA MODELS”

0 if i and j differ by > 1
; for synonymous tv.
- i Q,=1 K, for synonymous ts.
model-based inference i e

Kz, for non-synonymous ts.

Goldman and Yang (1994)
Muse and Gaut (1994)
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model based inference

3 analytical tasks

task 1. parameter estimation (e.g., w) 4m
task 2. hypothesis testing

task 3. make predictions (e.g., sites having w> 1)

task 1: parameter estimation

Parameters: t and w

Gene: acetylcholine o
g receptor
.2390 : —\ 23@0
N | o=l s 5
/Q : PR

2,
g
244 0
24y 4
g
4,

common
ancestor

InL =-2399




task 2: statistical significance

task 1. parameter estimation (e.g., w) ¢/

task 2. hypothesis testing <4mm LRT

task 3. prediction / site identification

task 2: likelihood ratio test for positive selection

Hy: variable selective pressure but NO positive selection (M1)
H,: variable selective pressure with positive selection (M2)

Compare 24l = 2(l; - I,) with a 2 distribution

Model 1a (M1a) Model 2a (M2a)

0.7 1
0.6 g'z
0.5 0:7
0.4 0.6
0.5
0.3 0.4
0.2 0.3
0.1 0.2
0.1
(1] o

®=05 (0=1) @=05 (w=1) @=325
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task 3: identify the selected sites

task 1. parameter estimation (e.g., w) ¢/

task 2. hypothesis testing ¢/

task 3. prediction / site identification 4mmBayes’ rule

task 3: which sites have dN/dS > 1

1
0.9
0.8

model:
10% have w> 1

y GTG CTG TCT GCC GAC AAG ACC AAC GTC AAG TGG GGC AAG GTT GGC GCG CAC
Bayes'rule: . T e e . ... .GC AL
Ha A 1928 12 e e e LT ... ... ... ... AL . .AA ... A.C ... AGC ...
SITe4’]2&]3 . - . ..G ... A.. ..T .GC ..T

. P . . ..T ... ..G ..A .GC ...

structure:
sites are in contact

19-08-09
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review the mixture likelihood (model M3)

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
o

P(x,)= Z p(w)P(x, | ®,)

i=0
Total Prior leellhood
probability

;=003 ©=040 w,=14.1
p,=0.85 p=0.10 p,=0.05

Bayes’ rule for identifying selected sites

[ Site class 0: w, = .03, 85% of codon sites
B Site class 1: w, = .40, 10% of codon sites
? I Site class 2: w, =14, 05% of codon sites

Prior probability of hypothesis (w,) Likelihood of hypothesis (w,)

\ /

P(w, | x,) = P(a)z)P(xh lw,)
EP(a)l.)P(xh lw,)

i=0

Posterior probability of Marginal probability (Total
hypothesis (w,) probability) of the data

19-08-09
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task 3: Bayes rule for which sites have dN/dS > 1

Rapidly evolving region

Conserved region

for some model parameters
via uniform priors

1
z 08
206
2 04
3
* 02
1 6 11 16 21” 2 31 36 41 46 51 56 61 66 71 76 81 8 91 96 101 106 111 116 121 126 131 136 141 146 151 156 161 166 171 176 181 186 191 196 201
[ Site class 0: w, = .03 (strong purifying selection)
Il Site class 1: w, = .40 (weak purifying selection)
Il site class 2: w, = 14 (positive selection)
NOTE: The posterior probability should NOT be interpreted as a “P-value”; it can be interpreted
as a measure of relative support, although there is rarely any attempt at “calibration™.
task 3: Bayes rule for which sites have dN/dS > 1
r— Bayes' rule m——————
\
empirical Bayes bootstrap
NEB BEB SBA
. . . (e )
Naive Empirical Bayes Bayes Empirical Bayes Smoothed bootstrap
« Nielsen and Yang, 1998 « Yang et al., 2005 el deeieliel]
* assumes no MLE errors ¢ accommodate MLE errors - ilingliene i ll, LE

33:2976-2989

e accommodate MLE errors
via bootstrapping

¢ ameliorates biases and
MLE instabilities with kernel
smoothing and aggregation

19-08-09
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critical question:

Have the requirements for maximum likelihood
inference been metz¢

(rarely addressed in real data analyses)

regularity conditions have been met

e )

2

10 15 20 25 3
10 5

5

= =

—_— —_—

0.00 0.10 0.20 3 4 5 6 7 8
w>1

\_ P Y

Normal MLE uncertainty (M2a)

* large sample size with regularity
conditions

*  MLEs approximately unbiased and
minimum variance

é~N(0,1(é)")
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regularity conditions have NOT been met

bootstrapping can be

used to diagnose this
f = problem:
g Bielawski et al. (2016)
2 Curr. Protoc. Bioinf.
s 56:6.15.
- Mingrone et al., MBE,
& - 33:2976-2989
o v
- 0.0 0.4 0.8 - 5 10 15
k P>t w>1

MLE instabilities (M2a)
+ small sample sizes and 8 on boundary

« continuous @ has been discretized (e.g..
M2a)

+ non-Gaussian, over-dispersed, divergence
among datasets

software for codon models in the ML framework

PAML: a package of programs for process modeling

HyPhy: comparative sequence analysis using stochastic evolutionary models;

http://www.hyphy.org/

DataMonkey: a server that supports a variety of HYPHY tools at no cost;
http://www.datamonkey.org/

COLD: a program that implements a general-purpose parametric (GPP)
codon model. Most codon models are special cases of the GPP codon
model. https://github.com/1jk23/COLD

codeml_SBA: a program that implements smoothed Boofstrap Aggregation
for Assessing Selection Pressure at Amino Acid Sites.
https://github.com/Jehops/codeml sba.

ModL: a program for restoring regularity when testing for positive selection
using codon models https://github.com/jehops/codeml_modl

19-08-09
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O

MO

part 4. phenomenological load and
biological inference

phenomenological load

review types of models

phenomenological mechanistic

Einstein

G, =8nT,

19-08-09
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phenomenological load

molecular evolution is process and pattern

process = pattern

( )
“MUTSEL MODELS”

N x % =M, ifneutral
Pr=
25, X
;N X ; —~ if selected
—e L

8; = A

Halpern and Bruno (1998)

phenomenological load

Maximum phenomenological model for sequence data: explains all variation
in a particular dataset

+ so-called “saturated model” (multinomial model)
» does nof generalize to other datasets

* no information about process

* highest InL score (useless?)

site pattern

4
GTG CTG TCT CCT GCC GAC AAG ACC AAC GTC AAG GCC GCC TGG GGC AAG GTT GGC GCG CAC
......... | 000 o000 o0oo Woo 00 500 000 000 000 0oo coo 0oo coo ooo o&S oo
coo ooco ooo, | oo® o0oo coo coo ooo Lo ooo A.T ... ... .AA ... A.C ... AGC ...
..... cC...|G;A .AT ... ..A ... ...A.. ... AA. TG. ... ..G ... A.. ..T .GC ..T
..... c .G§s&m ..T ... ... ..TC.. ..G ..A ... AT. ... ..T ... ..G ..A .GC ...

Question: Does anyone really care, atf all, that site pattern No.4 occurs 33
times in my sample of 5 mammalian mt genomes?

19-08-09
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phenomenological load

a different look at the issue ...

P =(x16,)
frue model (M)
O

Kullback-Leibler divergence

P(X16,)

O KL=Y P(X16,)log—1—~—F"~
fitted model (Poisson) X ( ) PM-P(XIGM-P)
R, =(x16,,)
Not to scale!
M, Mg
@)

“Deviance M;"

Dy, ==2{ty, (84, 1X.T)- 1, (X)}

O

M

Poisson model (M;): Line: Saturated model (My):

single rate parameter subspace as many parameters as
unique site patterns

19-08-09
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éM] M1 extends MO by the addition of parameters

MO/

D>

M

KEY POINT: addition of any parameter will reduce the deviance

The Likelihood Ratio Test (LRT) “manages” phenomenological variability
(not mechanistic variability)

19-08-09
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let's do a simulation study

and

let's use “double mutations” and “triple mutations” as an

example

example double (D): ATG (Met) = AAA (Lys)

example triple (T): AAA (Lys) = GGG (GLY)

the simulation and the outcomes...

process (My): outcome (X):

African
S we need outcomes to match up
gorla

orangutan
Sumatran orangutan
‘common gibbon
harbor seal

grey seal

ot

horse

Indian rhinoceros
con

proportion of sites

fin whale
blue whale
at i
mouse 123456758 91011
wallaroo ber of cid
oooseum number of amino acids
platypus
0 0 1 1 2 25 3 3
real miDNA data simulation outcome
simulation
*  MutSel

" diiffer for each site

NO DT-mutations

12 mt proteins (3331 codons)
20 mammails

heat maps: proportion of sites having a given pair of AAs

Our simulated data LOOKS LIKE the REAL DATA!

19-08-09
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DT: Double and Triple mutations

Example double: ATG (Met) & AAA (Lys) [a parameter]

Example triple: AAA (Lys) & GGG (GLY) [Bparameter]
MO Q matrix New Q matrix: MO + DT
¢ 2 parameters (k and w) « 4 parameters (k, w, o, )
« DT not allowed + DT allowed (via & and B)

NN

white: probability =0

0
o V PERCENT REDUCTION IN
DEVIANCE (PDR)

M, X

Poisson

19-08-09
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simulation for M;:
MutSel with NO DT-mutations

KL

O/%o
+DT

LRT:
@) 100%
M\

S
|

E PRD gives us a distribution for
Phenomenological Load

PRD

since there are NO DT-mutations,

phenomenological load

testing PL on three proposed mechanisms for mtDNA

proposed evolutionary mechanisms

DT relaxed synonymous
0.2 mutations selection rate variation
' PRD(dS)%

0.15 ¢ _
X 01} . ]
E 0 8, PRD(4, 3)

0.05} K ? .

E WPRD(]C)
S =
RaMoSSwDT RELAX dS Model

88 PRD for real mtDNA dataset

19-08-09
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part 5: re-assessing long-held paradigms
for evidence of adaptive evolution

Three paradigms for “this”
side:

1. codon substitution model: dy/ds>1is
evidence of adaptive evolution

2. "mechanistic” substitution models are macroevolutioanry
better time-scale

3. It's easy to test and predict model
performance via simulation

22



Paradigm 1: d,/d; > 1 is evidence of adaptive
evolution of function

the MutSel fitness landscape

equilibrium under
Mutsel matrix A

fitness
peak

MutSel fithess
landscape

1 N\ 1

most of occasionally never
the time (if lethal)

<j dwelling time of the "“SB" process E>

19-08-09
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the MutSel fitness landscape: adaptive evolution

environment changed

(protein must adapt the
way it functions)

key result 1:

adaptive evolution: p, > p_

("peak shift")

dy/ds > 1 (tfransient)

the MutSel fitness landscape: non-adaptive shifting balance

(1) amino acid aft site varies over time

(2) selection acts to “repair” shifts to
deleterious amino acids

key result 2:
purifying selection: p. = p_

(static landscape)

dy/ds > 1 (tfransient)

19-08-09
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Reality: d\/ds > 1 on a fixed
landscape with no change in
function

Proposal: develop new frameworks that do
NOT depend on the dy/ds > 1 paradigm

Paradigm 2: “mechanistic” substitution models
should be better

19-08-09
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All imply you move closer to a
true mechanistic model

Miyazawa BMC Evolutonary Biology 2013, 13257
hitp/wnww biomedcentralcom/1471-2148/13/257

BMC
Evolutionary Biology

RESEARCH ARTICLE Open Access

Superiority of a mechanistic codon substitution

model even for protein sequences in

Phylogenetic analysis

Sanzo Mivazavea On the Need for Mechanistic Models in Computational
Genomics and Metagenomics
David A. Liberles™*, Ashley I. Teufel", Liang Liu?, and Tanja Stadler’

'Department of Molecular Biology, University of Wyoming
2Department of Statistics and Institute of Bioinformatics, University of Georgia

A Generalized Mechanistic Codon Model

Zinstitut fur Integrative Biologie, Eidger

Maryam Zaheri,"? Linda Dib,""? and Nicolas Salamin*"?

'Department of Ecology and Evolution, Biophore, University of Lausanne, 1015 Lausanne, Switzerland
ZSwiss Institute of Bioinformatics, Genopode, Quartier Sorge, 1015 Lausanne, Switzerland

"These authors contributed equally to this work.

LRR =Dy, = Dy, = _2{ZM1(éMl|X’T)_ZM2(éM2|X’T)}

The Likelihood Ratio Test (LRT) “manages” phenomenological variability
(not mechanistic variability)

19-08-09
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For real data: mechanistic parameters within
models are expected to carry some
Phenomenological Load

Proposal: intentionally add phenomenological
parameters that improve inferences (e.g., covarion 8)

Paradigm 3: It's easy to test and predict model
performance via simulation

19-08-09
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Definable
models

Definable
models

28



Inference
models

Simulating
models

Definable
models

UNREALSTIC
site-pattern generate
distributions bl°|ogl.ca||y-
O Plaumble
site-pattern
—\jistributions
O
PL: you must test your
models in this zone
Natural
processes

Slide from Michael Landis (adapted)

In reality it's hard to (1) compare complex site
pattern distributions, and (2) identify models
that produce biologically plausible distributions

Proposal: we need to do more work on how to generate
“realistic” site pattern distributions and change the way
we think about testing model performance

19-08-09
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How can you really tell if you have learned
anything relevant to the function of your protein?

+ combine computational and experimental approaches (B.
Chang, next lecture; * ")

» informal cross-validation via comparison with external
phenotypic information (B. Chang, next lecture)

» formally include phenotypic information within the
likelihood inference framework (we have this working; the
paper is in revision... “stay funed”)

30



