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Details matter!
Codon models: waaaaay too much to cover in this talk

Macro-evolutionary inference of selection intensity:
* Very complex and diverse modelling strategies
» Deep statistical issues

« Model testing and interpretation

« Strong opinions about “the right thing to do”
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Looking for Darwin in Genomic Sequences: Validity
and Success Depends on the Relationship Between
Model and Data

Christopher T. Jones, Edward Susko, and Joseph P. Bielawski

Abstract

Codon substitution models (CSMs) are commonly used to infer the history of natural section for a set of
protein-coding sequences, often with the explicit goal of detecting the signature of positive Darwinian
selection. However, the validity and success of CSMs used in conjunction with the maximum likelihood
(ML) framework is sometimes challenged with claims that the approach might too often support false
conclusions. In this chapter, we use a case study approach to identify four legitimate statistical difficulties
associated with inference of evolutionary events using CSMs. These include: (1) model misspecification,
(2) low information content, (3) the confounding of processes, and (4) phenomenological load, or
PL. While past criticisms of CSMs can be connected to these issues, the historical critiques were often
misdirected, or overstated, because they failed to recognize that the success of any model-based approach
depends on the relationship between model and data. Here, we explore this relationship and provide a
candid assessment of the limitations of CSMs to extract historical information from extant sequences. To
aid in this assessment, we provide a brief overview of: (1) a more realistic way of thinking about the process
of codon evolution framed in terms of population genetic parameters, and (2) a novel presentation of the
ML statistical framework. We then divide the development of CSMs into two broad phases of scientific
activity and show that the latter phase is characterized by increases in model complexity that can sometimes
negatively impact inference of evolutionary mechanisms. Such problems are not yet widely appreciated by
the users of CSMs. These problems can be avoided by using a model that is appropriate for the data; but,
understanding the relationship between the data and a fitted model is a difficult task. We argue that the only
way to properly understand that relationship is to perform in silico experiments using a generating process
that can mimic the data as closely as possible. The mutation-selection modeling framework (MutSel) is
presented as the basis of such a generating process. We contend that if complex CSMs continue to be
developed for testing explicit mechanistic hypotheses, then additional analyses such as those described in
here (e.g., penalized LRTs and estimation of PL) will need to be applied alongside the more traditional
inferential methods.

Key words Codon substitution model, dN/dS, False positives, Maximum likelihood, Mechanistic
model, Model misspecification, Mutation-selection model, Parameter confounding, Phenomenologi-
cal load, Phenomenological model, Positive selection, Reliability, Statistical inference, Site-specific
fitness landscape
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1. mechanistic codon models




reconciling evolutionary time scales
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“MUTSEL MODELS”

i if neutral
Pr =+«
2s, _
M N X T if selected
s; = Af;

Halpern and Bruno (1998)

Wright-Fisher population
drift: N

mutation: g

selection: s;;

sj vary among sites AND
amino acids



mechanistic

population
fime-scale

codon models

macroevolutioanry
time-scale

» realism: fixation probability depends on fitness of ancestral and derived
amino acids in the context of the protein.

 the cost of realism: usually too complex to fit such a model to real data
(caveat: some versions will allow new ways to analyze big datasets)



mechanistic

population '

fime-scal
e codon models

macroevolutioanry
time-scale

population genetics at a single codon site (h)

fitness coefficients

selection coefficients

fixation probability (Kimura, 1962)




2. phenomenological codon models
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mutation: u;
drift: N
selection: s;
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population
fime-scale

henomenological
P g 4—— macroevolutioanry
mOdeIS fime-scale

phenomenological OMEGA MODELS

parameters

TT. for synonymous tv.
codon frequencies: / YHORYHOH

q, =4 kr;  forsynonymous ts. d N

w = dN/dS ) = —

wr;  for non-synonymous tv. —
parameter estimation k7, for non-synonymous ts. dS
via ML -
stationary process Goldman and Yang (1994)

Muse and Gaut (1994)




the instantaneous rate matrix, Q, is very big: 61 x 61

if i and j differ by > 1 )
z,  forsynonymous tv. Phenomenological codon models: just a few parameters can cover

Q=1 xm;  forsynonymous ts. > the 3721 changes between codons!
or;  for non-synonymous tv.
wkr;  for non-synonymous ts. *

to codon below:

TIT (Phe) — e OTTA — o o < ;
TIC (Phe) KToTTT — e P 0 okt . 0
TTA (Lev) ORTTT OTTTC — 0 o > 0
TTG (Lev) ORTTT OTTTC KTTTTA _ 0 0 - > 0
CTT (Lev) WOKTTTTT 0 0 0 . T 4 0
CTC (Lev) 0 OKTTTC 0 0 KITTTT R < 0
2 i ; ; ; ] ] N
GGG (Gly) 0 0 0 0 0 0 0 _

* This is equivalent to the codon model of Goldman and Yang (1994). Parameter w is the ratio
d\/ds, Kisthe transition/transversion rate ratio, and n; is the equilibrium frequency of the target
codon (i).



the instantaneous rate matrix, Q, is very big: 61 x 61

0 if i and j differ by > 1
T for synonymous tv.

kr,  for synonymous ts.

[0/ for non-synonymous tv.

wxr, for non-synonymous ts.

context matters...

Phenomenological codon models: just a few parameters can cover
> the 3721 changes between codons!

v

to codon below:

L€ cm
(Phe) (Phe) (Lev) (Lev) (Lev) (Lev) (Gly)

TTT (Phe) B KTTTC WTTTA WTTTG WKTTTT o > 0

* This is equivalent to the codon model of Goldman and Yang (1994). Parameter w is the ratio
d\/ds, Kisthe transition/transversion rate ratio, and n; is the equilibrium frequency of the target
codon (i).



probability of substitution between codons over time, P(t)

4 )
0 if i and j differ by > 1
T for synonymous tv.
Q,=4 Kz,  for synonymous ts.

wr.  for non-synonymous tv. [--"" 7T T oo oo oooososooooooooooooooo-

wkr . for non-synonymous ts.

P(t) = {p;(t)} = et macroevolutionary
/ time-scale

(F)

recall that Paul Lewis
infroduced Q matrices
and how to obtain
transition probabilities




likelihood of the data at a site

L,(CCC,CCT)= Z T Precc (to )kaCT (tl)
k

a

the likelihood is a sum over
all possible ancestral
codon states that could
have been observed at

\

recall that Paul Lewis
described how to
compute the likelihood of
the data at a site for a

-

node k

fo t DNA model. The only

difference here is that the

states are codons rather
than nucleofides

CCC CCT

note: analysis is typically done by using an unrooted tree



likelihood of the data at all sites

Paul Lewis
P covered this with
The likelihood of observing the entire the “AND” rule in

sequence alignment is the product of the his likelihood
probabilities at each site. lecture

4
see Paul Lewis’s
lecture slides for

more about
likelihoods vs. log-
likelihoods Y

The log likelihood is a sum over all sites.

N
¢ = In{L}=In{L,} +In{L,} +In{L;} +... +In{L,} = zln{Lh}
h=1




3. bridging selection between time-scales
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phenomenological

models
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“MUTSEL FRAMEWORK?”

e ho_
M if s; =0
Azh =<
' 2si’J’. _
.U,UN X l_e—_ZNSz}Jl otherwise
S = AV

Halpern and Bruno (1998)
Jones et al. (2016)




Two explicit ways to reconcile population genetics and macroevolution:

population
fime-scale

1. map fithess to equilibrium frequencies

macroevolutioanry
fime-scale

2. expected index of selection intensity

(1) Sella and Hirsh 2005; (2)Jones et al. 2016



1. fitness coefficients map to stationary codon frequencies

fithess
coefficients
<~
oyl

n T T T
()
o TCT
c o
(ol = h __ 0.1k T 4
-g g T = <TC1 ’ ’ ﬂ‘-61> Tgi AGT
(SN ey
v TCG AGC
— O . -

(Sella and Hirsh 2005)



2. from fitness coefficients to espected dN/dS

/

MUTSEL RATE MATRIX

IN" 1 dS" = Elevolution w/ selection]

Elevolution by drift alone]

Al
dN”/dShzz”” 77
h

« dN/dS = wwhen matrix Ahis replaced by matrix Q of model MO

« dN/dS is an analog of w under MutSel



4. three positive selection scenarios



1932: adaptive landscapes and “shifting balance”

o infroduces "ADAPTIVE LANDSCAPE" as a metaphor

Sewall Wright o infroduces “SHIFTING BALANCE" as a model
(SBT more complex than | will present)



positive selection: 3 evolutionary scenarios

frequency dependent
selection

episodic adaptation

non-adaptive shifting
balance

dynamic
fitness
landscape

static
fitness
landscape



1.
antagonistic

evolutionary

[ host-pathogen interaction

sexual-conflict }




a frequency-dependent adaptive landscape (weird)

fh—\—Sh |

f*-



‘ frequency-dependent adaptive landscape (weird)

1. amino acid at asite has /% all others have f' + s

2. fitness values swap when a substitution occurs

/O

o

MutSelMO: (1) and (2) above imply Markov chain properties with
the same rate matrix O as codon model MO

y

“OMEGA MODELS”

if i and j differ by > 1
for synonymous tv.

for synonymous ts.

for non-synonymous tv.

; for non-synonymous ts.

Goldman and Yang (1994)
Muse and Gaut (1994)

~




c frequency-dependent adaptive landscape (weird)

25 : : : —— generating process:
/ MutSelMO
20 7
’ expectation = dN"/dS"
Lﬁ 157 ° : symbol = ——
—
= S T
10 i
s fitted model:
5| /,::_’f:/’/ ] model MO
e : : inference = MLE @
5 10 15 20
S = 9Ns symbol = O

conclusion: phenomemologcial codon models
assume frequency-dependent selection

[ dos Reis (2015); Jones et al. (2016) ]



2,

episodic

. Darwinian
exploitation of a d 4 lateral gene

new niche adaptation tfransfer (LGT)

LGT event

AACY020107518

Spectral tuning switch (105) AACY020213435
Green (540) to Blue (490nm) AACY021829765

gene duplication

| dendRFP
- lawGEFP

— mcS
G52
scubGFP1
mc2
B2




e adaptive peak shift: evolution of novel function

optimal function in a stable environment

fh-\—S

population: at fitness peak

fitness peak: stationary

FFTNS: keeps population at peak



e adaptive peak shift: evolution of novel function

sub-optimal function in a novel environment

-1

fh—\—Sh

fh

population: lower fithess
fitness peak: moving
FFTNS: increase population mean fithess

(non-stationary process)



e adaptive peak shift: evolution of novel function

episodic adaptive evolution of a novel function

fh-\—S

population: returns to peak

fitness peak: stabilized
FFTNS: increases population mean

fitness until at peak



6 adaptive peak shift: MutSel-ES
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calculate the non-synonymous to synonymous
rate ratio of protein-coding genes under the
Fisher—Wright mutation—selection
framework. Biol. Lett. 11: 20141031.
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Molecular evolution

How to calculate the non-synonymous to
synonymous rate ratio of protein-coding
genes under the Fisher—Wright
mutation —selection framework

Mario dos Reis

Department of Genetics, Evolution and Environment, University College London, Gower Street,
London WC1E 6BT, UK

First principles of population genetics are used to obtain formulae relating the
non-synonymous to synonymous substitution rate ratio to the selection coeffi-
cients acting at codon sites in protein-coding genes. Two theoretical cases are
discussed and two examples from real data (a chloroplast gene and a virus
polymerase) are given. The formulae give much insight into the dynamics of
non-synonymous substitutions and may inform the development of methods
to detect adaptive evolution.

4. The non-synonymous rate during adaptive

evolution



g adaptive peak shift: MutSel-ES

“signal” decays
over time

RN

generating process:
MutSel-ES

expectation = dN"/dS"

symbol = ——

w is biased
estimate of dN/dS

02 04 06

branch length

0.8 1

fited model:
model MO

inference = MLE @

symbol = O

conclusion : episodic models “work” because w>1 is a consequence of a
system moving towards a new fithess peak.

conclusion : episodic models “work” because they are sensitive to non-

stationary behavior

[dos Reis (2015); Jones et al. (2016) ]



Spielman and Wilke (2015)

coefficients are

3. fithess (
y

constant . dN/dS must be <1 when fithess

(fixed-peak) coefficients are fixed.

« positive selection is not
possible on a stationary fithess

peak
f I Sh
N\
rh
\% /
“ES‘ \“ \/’

[Spielman and Wilke, (2015); Jones at al., (2016)]



e shifting balance: movement around stationary peak (hon-adaptive)

mutation and drift can move a pop. off a fithess peak



e shifting balance: movement around stationary peak (hon-adaptive)

mutation and drift can move a pop. off a fithess peak



a shifting balance: the MutSel landscape (Jones at el. 2016)

equilibrium under
MutSel matrix A

fitness

- r |

MutSel fithess landscape

most of occasionally never
the time (if lethal)

< dwelling time of the “SB" process >




e shifting balance: positive selection on a MutSel landscape

(1) amino acid at site varies over time

(2) selection acts to “repair” shifts to
deleterious amino acids

/
EXPECTED PROPORTION OF
MUTATIONS FIXED BY SELECTION

ho E(U)Ezh (A: _uui)l+
b= ntA”

izj LY

conclusion: p, > 0 as long as number of viable amino acids > 1 at a site



p+

(1) amino acid at site varies over time

(2) selection acts to “repair” shifts to
deleterious amino acids

key result:
purifying selection: p, =p_

(static landscape)

positive selection without adaptation (maintenance!)

related to “fixed drift load"”



e shifting balance: the MutSel landscape

dN"/dS" depends on the current amino acid

——— dN"/d§"

non-adaptive
dN/dS > 1

codon frequency

temporal average dN*/dS" = 0.61

conclusion: positive selection operates on a stationary fithess
peak in the same way as when there is an adapftive peak shift



5. nearly-neutral theory and “heterotachy”

GAGE)  GaA(E)

AAG(K) - .« AAA(K)

ACC(T)
* ACT(T)

ACA(T)
ACG(T)



landscapes have unique structures

MutSel landscape McCandlish landscape
GAG(E
e E)  caaE)
0.16
0.14
>°'12 1 AAGKK) «  « AAA(K)
£ o
§0‘08
0.06
0.04 ] ACC(T)
ACT(T)
0.02
5 ACA(T)
ACA(T) ACT(T) ACC(T) ACG(T) GAA(E) GAG(E) AAA(K) AAG(K) ACG(T)

Sorted Codons

conclusion: A population can get to a sub-optimal codon
(E) by drift and reside there for some time (b/c moving
between T and E requires changes = 2 codons).



landscapes have unigque structures

y

Nearly-neutral theory:
selection and drift
interact!

same site... 10x decrease in N (f” have not changed!)

MutSel landscape McCandlish landscape
' ' . ' ' i /
0.08 i ' " Rate of evolution
depends on

0.06 1 ) lati :
- 7 population size
§0.04 T 7
o 1 R
= W Lgl

- bR

: WDG a4 . ‘1@:%6

€
N wRe'
0 vE © =

Sorted Codons

conclusion: decreasing N changes:
I. the “space” for shifting balance

ii. mean dN/dS
iii. equilibrium frequencies



shifting balance: the MutSel landscape

dN"/dS" depends on the current amino acid

T T T 7.5
- ——— dN"/dS"
0
g Q
O %)
2 N
. =
IS
@)

1.0

temporal average dN*/dS" = 0.61



shifting balance: a mechanistic model

-

NOTE: Rate switching
like this is called

"Heterotachy”

/

’ﬁ— EXPECTED NO. OF
SWITCHES PER SUB.

< “SB" process >

h Ah

dN"/dS" < 1

6:
T

dAN"/dSh > 1 sorted: state-specific dN/dS




What does heterotachy “look” like on a tree?

SITE 1 SITE 2 SITE 3

—— LOW (w);) — HIGH (W)

switching: &



shifting balance: a mechanistic model

shifting balance over landscape

high moderate low landscapes:
250
o: {0.0001,
— 0.001,0.01}
N = 1000
median switching rate () 0.25
expected probability of a
site being in the “tail” of m%dggg;e
the landscape (Pys1) (1%-25%)
Expected dN/dS in the
“tail” of the landscape 1-3
Expected dN/dS near
the “peak” of the <0.4
landscape
rate of evolution “fqst” “informative” “conserved”

(i.e., “type of site”)



We can model heterotachy with a covarion-like model

evolutionary regime 1: switching process:

w; = low
w; = w,

(“near the peak™)

evolutionary regime 2:
switching process: ws, = high

w; € w; (“in the tail”)

[ Guindon et al., (2004); Jones et al. (2016); Jones et al. (2018); Jones et al. 2019 ]

the covarion-like codon model can be fit to real data



shifting balance: a mechanistic model

median switching rate ()

expected probability of a
site being in the “tail” of
the landscape (pwsi)

Expected dN/dS in the
“tail” of the landscape

Expected dN/dS near
the “peak” of the

landscape

rate of evolution
(i.e., “type of site”)

shifting balance over Iondscope

high moderate

\KL

moderate
(1%-25%)

<0.4

“fast” “informative” “conserved”

landscapes:
250 f

g {0.0001,
0.001, 0.01}

= 1000

This “signal” is
detectable with
covarion codon

models!

recall: no adapftive

evolution in this case
(stationary fitness

peak)!!!




6. some common types of codon models

~
“OMEGA MODELS”

if i and j differ by > 1
T, for synonymous tv.
Q,=4 km;, for synonymous ts.

or,  for non-synonymous tv.

k7, for non-synonymous ts.

Goldman and Yang (1994)
Muse and Gaut (1994)

~




this codon model “MO0"

/ )
“OMEGA MODELS”

0 if i and j differ by > 1
T for synonymous tv.
Q,=1 kr;  for synonymous ts.

o,  for non-synonymous tv.

wkr. for non-synonymous ts.

Goldman and Yang (1994)
Muse and Gaut (1994)

W
A
| 1
GTG CTG TCT CCT GCC GAC AAG ACC AAC GTC AAG GCC GCC TGG GGC AAG GTT
......... G.C ... ... ... T T ..
.C ..T A.. ... A.T AA A.C
..... C G.A AT ... ..A ... ... A.. ... AA. TG G A
..... C G GA T T C. ..G A AT T ... ..G
same w same w

for all branches for all sites



two basic types of models...

W, @ @, W, @
1 1 1
| I I \
GTG CTG TCT CCT GCC GAC AAG ACC AAC GTC AAG GCC GCC TGG GGC AAG GTT
......... G.C ... ... ... T ..T .. ..
.C ..T A.. ... A.T AA A.C
..... C G.A AT ... ..A ... ... A.. ... AA. TG G A..
..... C G GA T .T C ..G A AT T ... ..G

branch models
(e varies among site models
branches) (e varies among sites)



interpretation of a branch model

episodic adaptive
evolution of a novel
function with w; > 1



branch models*

Yang, 1998 fixed effects
Bielawski and Yang, 2003 fixed effects

Seo et al. 2004 auto-correlated rates
Kosakovsky Pond and Frost, 2005 genetic algorithm
Dutheil et al. 2012 clustering algorithm

" these methods can be useful when selection pressure is strongly episodic and
functional change is substantial




site models*

GTG CTG TCT CCT GCC GAC AAG ACC AAC GTC AAG GCC GCC TGG GGC AAG GTT GGC GCG CAC
......... G.C ... ... ... T.. ..T ... ... it leee vt vie vue vuee ... GCA..

o - A.T ... ... .AA ... A.C ... AGC ...
..... c...G.A.AT... ..A... ...A.. ...AA. TG. ... ..G ... A.. ..T .GC ..T
..... c..6e. ..T ... ... ..TC.. ..G..A ... AT. ... .. T ... ..G ..A .GC ...

This is NOT a
comprehensive list!

Yang and Swanson, 2002 fixed effects (ML)
Bao, Gu and Bielawski, 2006 fixed effects (ML)
Massingham and Goldman, 2005 site wise (LRT)
Kosakovsky Pond and Frost, 2005 site wise (LRT)
Nielsen and Yang, 1998 mixture model (ML)
Kosakovsky Pond, Frost and Muse, 2005 mixture model (ML)
Huelsenbeck and Dyer, 2004; Huelsenbeck et al. 2006 mixture (Bayesian)
Rubenstein et al. 2011 mixture model (ML)
Bao, Gu, Dunn and Bielawski 2008 & 2011 mixture (LIBaC/MBC)
Murell et al. 2013 mixture (Bayesian)

» useful when at some sites evolve under diversifying selection pressure over long periods of time



site models: discrete mixture model (M3)

p

0.9 1
0.8 1
0.7 1
0.6 1
0.5 -
0.4 1
0.3 1
0.2 1
0.1 -

MIXTURE-MODEL LIKELIHOOD

P(x,)=Y pP(Kx,|®,)

conditional likelihood
calculation (see part 1)

®,=0.01 ©=10 ®,=2.0



interpretation of a sites-model

0.9
0.8
0.7

0.5
0.4 b of|sites

0.2
0.1

®,=0.01 =10 ®,=2.0
s

diversifying selection
(frequency dependent)
at 5% of sites with



models for variation among branches & sites

wWw; Wy @ R @
f : Vo ! N ) \
GTG CTG TCT CCT GCC GAC AAG ACC AAC GTC AAG GCC GCC TGG GGC AAG GTT
......... GgT R ..TA“ AT i LG
..... C G.A AT ... ..A ... ... A.. ... AA. TG G A
..... Cc G GA T T C. ..G A AT T ... ..G

branch models site models

(w varies among (w varies among sites)

branches)

branch-site models
(combines the features of above models)



models for variation among branches & sites

This is NOT a
comprehensive list!

Yang and Nielsen, 2002 fixed+mixture (ML)
Forsberg and Christiansen, 2003 fixed+mixture (ML)
Bielawski and Yang, 2004 fixed+mixture (ML)
Giundon et al., 2004 covarion-like (ML)
Zhang et al. 2005 fixed+mixture (ML)
Kosakovsky Pond et al. 2011, 2012 full mixture (ML)
Jones et al., 2016, 2018, 2020 mix-covarion-like (ML)

"these methods can be useful when selection pressures change over
time at just a fraction of sites

"it can be a challenge to apply these methods properly



branch-site “Model B"

y

MIXTURE-MODEL LIKELIHOOD

P(x,)=Y. PP(X, @)

Foreground

o
| |
. [ [ T [ [ [ ]

@=0.01 ®=0.90

Q) =

5.55

w for background branches
are from site-classes 1 and
2 (0.01 or 0.90)



two scenarios can yield branch-sites with dy/ds > 1

0.51 o OT sites

0.31 ( Foreground (FG)

0.2+ branch only

/]

L

-

\ 3

10% of sites have
shifting balance on

a fixed peak
(same function)

=001 @=090 ;=555

episodic adaptive
evolution at 10% of
sites for novel function

g
izg,
4 “\'\Q“‘“
N,
Rt
Do

branch-site codon
models cannot tell
which scenario is
correct without
external information!

Jones et al (2016) MBE
Jones et al (2018) MBE




/. "“bells -n— whistles" ...

codon models + “other processes”

TIT (Phe)

TIC (Phe)
TTA (Leu)
TIG (Lev)
CTT (Leu)
CIC (Leu)

GGG (Gly)

to codon below:

TG

TG

0

WKTTCTC

© © © o © o




“bells -n— whistles”... some general categories

1. alternative models of codon frequencies

2. GIR process at DNA-level

3. among-site synonymous rate (ds) variation

4. double & triple nucleotide changes

5. amino acid exchangeabillities

6. multi-process variation among sites

/. multi-pattern (tree) variation among sites

(the @r's parameters are important)

(this is NOT a mutational process)

(phenomenologically important)

(confounded with heterotachy)

(confounded with codon frequencies via fitness)

(do we really want this much complexity?)

(this can be important)



TTT (Phe)
TIC (Phe)
TTA (Lev)

m

KTTTT

Tc
(Phe) (Phe)

KTTTC

T wnrTC
0

TIG (Lev) Ty oTrTIe

CIT (Lev) WKTTTTT

CTC (Lev)

GGG (Gly)

0

Is there some way that we can become less-dependent on all this

phenomenological complexity which can obscure evolutionary implicationse



|l | D)

8. Phenotype-Genotype codon models

chr9 chri® chril

chr12 chr16 chri7 chri8 chri9 chr28 chr21 chr22



Phenotype-Genotype codon modelse

another justification...

Trends in Ecology & Evolution

Cel

REVIEWS

Phylogenetics is the New Genetics

(for Most of Biodiversity)

Stacey D. Smith,"%*® Matthew W. Pennell,? Casey W. Dunn,® and Scott V. Edwards*®

Despite substantial progress in understanding the genetic basis for differences
in morphology, physiology, and behavior, many phenotypes of interest are
difficult to study with traditional genetic approaches because their origin traces
to deep nodes in the tree of life. Moreover, many species are not amenable to
either large-scale sampling or laboratory crosses. We argue that phylogenetic
methods and theory provide tremendous power to identify the functional genetic
variation underlying trait evolution. We anticipate that existing statistical
comparative approaches will be more commonly applied to studying the genetic
basis for phenotypic evolution as whole genomes continue to populate the
tree of life. Nevertheless, new methods and approaches will be needed to fully
capitalize on the power of clade-scale genomic datasets.

Most of Biodiversity Is Beyond the Reach of Classical Genetics

One of the fundamental goals of biology is to connect variation across genomes to differences in
phenotypes. With advances in sequencing and molecular genetic techniques, this area of biology
has blossomed in recent years, revealing the genetic basis for traits ranging from floral scent [1] to
sociality [2] to herbivory [3]. At the same time, statistical methods for analyzing these data have
also proliferated [4-6]. At their core, however, all classical and population genetic methods for
genotype-to-phenotype mapping (see Glossary) work by associating genetic variation with
differences in the trait of interest. Thus, they require a population with segregating phenotypic
variation, which could be produced artificially through crosses or mutagenesis or could occur
naturally, such as in polymorphic species or hybrid zones between species. As with any statistical
approach, association methods [e.g., genome-wide association studies (GWASs)] have sig-
nificant challenges and pitfalls [6,7]. Still, the loci uncovered by association mapping and similar
methods have often been validated in subseguent functional studies [8,9], confirming their ability
to identify regions of the genome that contribute to phenotypic differences.

Despite the success of this population genetic program for genotype-phenotype mapping, it
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Genome sequencing is rapidly spread-
ing beyond model organisms, opening
the door to comparative studies that
can reveal the genetic basis for pheno-
typic variation across species. Neverthe-
less, statistical comparative methods
have not been frequently applied to
these data.

New phylogenetic methods have been
developed with the explicit goal of linking
genes and even specific mutations to
species differences (‘PhyloG2P’). Appli-
cations of these methods show great
promise for uncovering new sources of
functional variation and tackling traits
beyond the reach of traditional genetic
approaches.

Parallel advances in statistical compara-
tive methods present new avenues for
expanding the phylogenetic toolkit and
creating tailored approaches for map-
ping genotype to phenotype.
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presents significant limitations for understanding the genetic basis of phenotypes for most of ~ Biology, Yale University, New Haven,

biodiversity. First, many species cannot be propagated artificially or sampled in the wild at the
scale needed for association mapping (usually hundreds of individuals, depending on the trait
of interest). Second, and more importantly, many traits of interest are not found segregating in
nature nor can different species with contrasting phenotypes be crossed. For example, mammals
with and without pouches cannot be crossed, precluding the creation of a mapping population
segregating for pouches. As a consequence, our understanding of the genetic basis for
phenotypic diversity is concentrated around a narrow range of species and traits — often those
that vary in model organisms amenable to genetic studies. Although loci discovered through
genetic studies of model species often later help to explain variation at deeper phylogenetic levels
(i.e., across species [10,11]), we wonder what we might discover if this research program were
inverted (Figure 1). We suggest, and recent studies confirm, that beginning from a phylogenetic
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