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Abstract
Probabilistic models of sequence evolution are in widespread use in phylogenetics andmolecular sequence evolution.
These models have become increasingly sophisticated and combined with statistical model comparison techniques
have helped to shed light on how genes and proteins evolve.Models of codon evolution have been particularly useful,
because, in addition to providing a significant improvement in model realism for protein-coding sequences, codon
models can also be designed to test hypotheses about the selective pressures that shape the evolution of the
sequences. Such models typically assume a phylogeny and can be used to identify sites or lineages that have evolved
adaptively. Recently some of the key assumptions that underlie phylogenetic tests of selection have been questioned,
such as the assumption that the rate of synonymous changes is constant across sites or that a single phylogenetic
tree can be assumed at all sites for recombining sequences.While some of these issues have been addressed through
the development of novel methods, others remain as caveats that need to be considered on a case-by-case basis.
Here, we outline the theory of codon models and their application to the detection of positive selection.We review
some of the more recent developments that have improved their power and utility, laying a foundation for further
advances in the modeling of coding sequence evolution.
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INTRODUCTION
Models of molecular sequence evolution have

diverse applications, from phylogenetics to genome

annotation and comparative genomics. Although

early models of sequence evolution achieved sig-

nificant simplification by assuming that nucleotide

sites evolve independently [1, 2], more realistic

models have been proposed to take a range of

different sources of context dependency into account

[3, 4]. One of the most obvious sources of context

dependency derives from the triplet nature of the

genetic code. It is this dependency that is accounted

for by codon models, which treat triplets of nucleo-

tides as the states of the probabilistic process describ-

ing the evolution of a protein-coding sequence.

Models that account for this have been shown to

provide a substantially improved fit to protein-

coding sequences [5, 6].

The degeneracy of the genetic code suggests a

natural classification of codon substitutions, depend-

ing on whether they change or do not change the

encoded amino acid (nonsynonymous and synon-

ymous substitutions, respectively). The proposition

that synonymous substitutions are generally neutral

leads to the description of codon evolution as a

combination of substitutions at the nucleotide level,

and selective constraints operating at the protein

level [7]. Codon models have distinct parameters

describing the mutational and selective components

of the substitution process, providing a means to

assess the selective forces acting on a protein. Many

of the applications of codon models relate directly

to this capacity to quantify the strength of selection.

Three types of selective pressures are frequently

considered. When the rate at which nonsynonymous

substitutions accumulate is lower than the rate of
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synonymous substitution, this is normally taken to

imply that, on average, nonsynonymous substitutions

have a negative effect on fitness. This is frequently

referred to as purifying selection. A nonsynonymous

substitution rate which is equal to the synonymous

rate is consistent with neutral evolution, or the

absence of selective constraints acting to preserve

features of the encoded protein, when the rate of

nonsynonymous substitution is greater than the rate

of synonymous substitution this implies that, on

average, nonsynonymous mutations confer a selec-

tive advantage and increase in frequency through

positive selection. Thus, a comparison of the rate

of nonsynonymous substitution to synonymous sub-

stitutions can provide evidence that a protein is

evolving adaptively.

Codon models are very frequently used to

identify protein-coding sequences evolving under

purifying or positive selection pressure. Evidence of

purifying selection pressure is useful for distinguish-

ing coding from noncoding genomic regions, when

orthologous sequences are available [8]. Any putative

protein-coding sequence with a nonsynonymous

substitution rate significantly lower than the synon-

ymous rate can be inferred to be translated, and is

likely to be functional. The ratio of nonsynonymous

to synonymous substitutions also allows the strength

of selection to be quantified and compared between

different genes or gene copies. On the other hand,

the identification of sequences or subsets of sites

within a sequence evolving adaptively can provide

information about key evolutionary processes and

innovations. Because the effects of selection are very

different at distinct sites in a sequence the question of

how best to model site-to-site variation in param-

eters describing selective constraints receives partic-

ular attention. We review two trends in this regard,

distinguished by whether sites are considered to

belong to distinct site classes with fixed parameter

values or whether the parameters themselves are

described by random variables. These alternatives

are referred to as fixed effects likelihood (FEL)

and random effects likelihood (REL) models,

respectively.

In this review, we outline the development

of phylogenetic models of codon evolution with a

focus on the use of these models to identify sites

or lineages evolving adaptively. We consider recent

advances leading to improved model realism,

including the development of novel techniques to

model sequence heterogeneity and a movement to

integrate population genetics concepts into models

of molecular evolution. Several caveats for the

application of codon models are considered and

we outline some of the solutions that have been

proposed to address these concerns.

Probabilistic models of molecular
sequence evolution
The modeling of molecular evolution has been

facilitated largely by the development of an efficient

means of calculating the likelihood [9] of an

alignment, given a hypothesis of the phylogenetic

tree relating the taxa in the alignment and an

appropriate probabilistic model of the substitution

process. These models generally take the form of a

continuous time Markov process in which mutations

are modeled along the branches of a phylogenetic

tree, according to a rate matrix, Q, with elements (qij)
describing the instantaneous rate of substitution from

state i to state j, where the states may be nucleotides,

amino acids or codons. Elements vary with model

definition, yet typically make use of three parameter

types: (i) frequency parameters, (ii) exchangeability

parameters and (iii) rate heterogeneity parameters [7].

Both nucleotide and amino acid models of mole-

cular evolution, and the methodological details of

maximum likelihood phylogenetics, have been

extensively reviewed elsewhere [1, 2, 10–13].

Codon models have previously been reviewed

[1, 13], though not some of the more recent

developments in the field.

Codon models have an alphabet of 64 states,

typically reduced to 61 after removal of the three

stop codons in the common genetic codes. The most

general parameterization is [14]:
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0;
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if i! j requires more than 1nt substitution

if i! j requires a single synonymous

nucleotide substitution

if i! j requires a single non-synonymous

nucleotide substitutionj

8>>>><
>>>>:

where following Kosakovsky Pond et al. [14],

�mn describes the relative exchangeability of nucleo-

tide m for n (�AG ¼ 1). �bs is a parameter proportional

to the rate of synonymous substitution, indexed by

site in the alignment, s, and branch of the phylogeny,

b, in the formulation presented here. Similarly, �bs is

a parameter proportional to the rate of nonsynon-

ymous substitution, similarly indexed, and �pn is the

equilibrium frequency (usually estimated directly

from the empirical data rather than optimized as
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a model parameter) of the target nucleotide n
(i.e. the nucleotide that differs between codons

i and j) at codon position p (p ranges from position

1 to position 3 of the triplet codon) [15]. The

parameters �mn are typically chosen from the range

of standard nucleotide models, with the HKY85 [16]

and general time reversible (GTR or REV) models

[17] being popular. It is worth noting that the

appropriate model choice depends primarily on data

set size rather than on biological considerations: for

large data sets the more parameter-rich models (e.g.

GTR) tend to be appropriate, while small data sets

necessitate the use of less detailed models.

An alternative parameterization of the codon

model [18] is obtained by letting substitution rates

be proportional to the frequency of the target codon

rather than the position-specific frequency of the

target nucleotide as in the Muse–Gaut (MG) [15]

implementation. We use the terms Goldman–Yang

(GY) and MG to denote these two alternative model

assumptions. In the Goldman and Yang [18] param-

eterization, codon frequencies are estimated from the

data either as the product of the frequencies of

the 3 nt that make up the codon (referred to as

F1� 4), or as a product of position-specific nucleo-

tide frequencies (F3� 4). These estimates of equilib-

rium codon frequencies are more robust than an

empirical count, since a very large amount of data

would be required to provide a good estimate of the

true equilibrium codon frequencies. However, actual

counts can also be used, or codon frequencies can

be treated as free parameters to be estimated. We

evaluated the relative performance of the MG [15]

versus GY [18] model assumptions, by fitting them

to published datasets (Table 1) and comparing log

likelihoods. Both implementations used the general

time reversible model as the underlying nucleotide

model, empirically estimated position-specific

nucleotide frequencies (individually for MG and

multiplied together as F3� 4 estimates for GY) a

discrete distribution for �bs , corresponding to M3 in

Ref. [19] and constant �bs . In all cases the MG model

assumption outperforms the GY assumption

(Table 1). This is consistent with recent Bayesian

model comparison results [20], in which the

mechanistic assumptions of these models, and their

respective performances, are discussed in detail.

Detecting selection affecting specific
sites
As formulated above, both the rate of synonymous

substitution, �bs , and the nonsynonymous substitu-

tion rate, �bs , are allowed to vary across branches,

b, and sites, s [19, 21–24]. In real protein-coding

sequences, evolutionary rates vary substantially by

position along the sequence and may vary by lineage;

however, models allowing independent rates for

all sites and all lineages would be severely over-

parameterized. The choice of how to model hetero-

geneity in evolutionary rates provides an important

distinction between alternative implementations of

codon models. Earlier models treated evolutionary

rates as random quantities described by param-

eterized distributions [19, 25], while some more

recent models treat rates as a fixed effect but allow

distinct classes of sites with independent parameters

(including rate parameters). These two alternative

approaches to modeling rate variation have been

referred to as REL and FEL methods, respectively

[26–28]. In both cases a nonsynonymous rate (dN)

significantly greater than the synonymous rate (dS),

or alternatively, ! ¼ dN=dS significantly greater

than one, points to positive Darwinian selection

[29]. Sites at which this is the case are of particular

interest and several implementations of codon

models are extremely widely used to identify these

sites (Box 1).

The simplest random effects models use a constant

rate of synonymous substitution and approximate the

sitewise variation in nonsynonymous rates using

a three category discrete distribution accounting

for purifying selection (!< 1), neutrality (!¼ 1) and

positive selection (!> 1) [30]. A test of positive

selection can be obtained by comparing the like-

lihood under a model where the positive selection

component (!> 1) of this distribution has zero

weight to the likelihood without this constraint

(corresponding to a comparison of Wong et al’s [30]

models M2a and M1a). Since these models are

nested, the distribution of the likelihood ratio

test (LRT) statistic (Box 2) approximates a �2

Table 1: Performance comparison of MG [15] and GY
[18] codon model assumptions on previously published
datasets

Data set MG-GTR GY-GTR

Abalone Lysin [85] �4357.9 �4381.3
Primate COXI [86] �12123.6 �12271.1
Vertebrate �-globin [16] �3666.7 �3686.8
Drosophila adh [16] �4593.7 �4648.5
HIV-1env [16] �1121.6 �1158.8
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distribution with degrees of freedom equal to the

difference in the number of free parameters between

the two models. For the above test, the difference in

number of free parameters is two, one rate parameter

(!> 1), and a parameter describing the proportion

of sites under positive selection and a conservative

test can be obtained by comparing against a �2

distribution with two degrees of freedom. In fact, in

this particular case, the LRT statistic is asymptoti-

cally approximated by an equal mixture of a �2

distribution with zero degrees of freedom and a �2

distribution with one degree of freedom (see

[31, 32] for a discussion of one-tailed LRTs in

phylogenetics). In addition to this approximation of

the heterogeneity of ! across sites, other distributions

have been proposed [19, 33]. Wong et al’s [30] M1a

versus M2a, and Swanson et al’s [33] M8a versus M8,

which models ! as a mixture of a beta distribution

and point mass at !¼ 1 in the null, and with !> 1

in the alternate [33], are recommended for tests of

positive selection. The characteristics of these and

other suitable REL models are presented elsewhere

[19, 23, 30].

The LRT provides a test of whether some sites in

a sequence alignment are affected by diversifying

selection, but does not identify specific sites at which

Box 2: Statistical concepts andmethods

Concept Description

Likelihood The likelihood of a model (usually expressed as a function of its set of parameters) is the probability of observing the data,
given the model parameters.

Maximum likelihood
estimates (MLEs)

MLEs are fixed parameter values that maximize the likelihood of observing the data. Maximum likelihood (ML)-based
methods use these fixed estimates, rather than averaging over multiple parameter values, as in Bayesian methods.

LRT A classical hypothesis test for comparing the ML of a simpler model, L0 (e.g. excluding positive selection) which is nested
within a more general model, L1 (e.g. including positive selection).The LRT provides an indication of whether the simpler
model is inadequate to explain the data.Under L0, the LRT test statistic (2*(lnL1�lnL0)) is �

2 distributed with degrees of
freedom equal to the number of extra free parameters in L1 (see text for discussion).

AIC An alternative ML-based model comparison technique that allows for comparison of non-nested models and that penalizes
models according to the number of parameters, k (AIC¼ 2*k� 2 ln(L)).

Bayesian inference Bayesian inference methods account for uncertainty in parameter estimates by performing a weighted average over
possible parameter values. Bayesian methods require prior distributions for all parameters, which are typically assumed
to be uninformative.

NEB A post hoc analysis that uses the MLEs from a ML-based method to infer posterior probability distributions for parameters
of interest. NEB assumes the MLEs are correct.

BEB Similar to NEB in that MLEs are used to infer posterior probability distributions, but takes uncertainty in the MLEs into
account.

MCMC A sampling approach that can be used to approximate a probability distribution that is mathematically intractable. MCMC
is often used in a Bayesian setting to estimate posterior probability distributions of model parameters.

Box1: Software implementations of codonmodels of evolution

Software Description URL Platforms supported

PAML Phylogenetic statistical hypothesis testing [97] http://abacus.gene.ucl.ac.uk/software/
paml.html

Linux Windows Mac OSX

HyPhy Phylogenetic statistical hypothesis testing using
existing and custom models

[98] http://www.hyphy.org/ Linux Windows Mac OSX

PyEvolve Phylogenetic statistical hypothesis testing using
existing and custom models

[99] http://cbis.anu.edu.au/software.html Linux Windows Mac OSX

Datamonkey Free web server implementation of various models
in the HyPhy package

http://www.datamonkey.org/ Web server

Selecton Free web server for sitewise detection of selection [100] http://selecton.tau.ac.il/ Web server
ADAPTSITE Positive selection using counting methods [101] http://www.cib.nig.ac.jp/dda/yossuzuk/

welcome.html
Linux Mac OSX

BEAST Estimation of population parameters given
uncertainty in the inference of phylogenies

[102] http://beast.bio.ed.ac.uk/ Linux Windows Mac OSX

MrBayes Bayesian phylogenetics software with codon
models for positive selection detection

[48] http://mrbayes.csit.fsu.edu/ Linux Windows Mac OSX
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! is greater than one. In the case of REL models,

empirical Bayesian methods (Box 2) have been used

[25, 34]. Naı̈ve empirical Bayesian (NEB) methods

make use of maximum likelihood estimates of

parameters describing the distribution of !, inferred

from the whole sequence, as a prior in order to

estimate a posterior probability for each of the sites

belonging to a site class in which !> 1 [25]. The

posterior probability that a site s, belongs to rate

category k, is the product of the likelihood of the

data at site s given the category k, LðDsj!kÞ, and

the prior (Pð!s ¼ !kÞ, set to the inferred proportion

of sites belonging to category k), normalized by the

sum of site-specific likelihood for each category:

Pð!s ¼ !kjDsÞ ¼
Pð!s ¼ !kÞLðDsj!kÞP

i
LðDsj!iÞ

The posteriors, for each site and each rate

category, are used to determine which sites are

evolving under positive selection, given a posterior

probability threshold. Since NEB uses the maximum

likelihood parameter estimates of the distribution

describing the sitewise variation in synonymous and

nonsynonymous substitution rates as a prior, it is

susceptible to inaccuracies in these estimates [35].

Potential solutions to this problem include a full

Bayesian method for calculating posterior proba-

bilities using Markov chain Monte Carlo (MCMC)

[36, 37], and an approximate method, which

accounts for some of the uncertainty in the maxi-

mum likelihood parameter estimates through aver-

aging over a prior (Bayes empirical Bayes or BEB)

[34, 38].

FEL methods provide an alternative to the REL

models discussed above. These models treat sites

as belonging to distinct classes, with independent

parameters. In the extreme case, each site belongs to

a separate class, requiring the estimation of a large

number of free parameters, with the concomitant

danger of over-parameterization [1]. When reason-

able partitions of sites can be specified a priori, FEL

models that allow separate parameters between these

site classes may be useful [28]. For example, the

a priori partitioning of MHC sites involved in the

binding of foreign peptides [28] from other sites,

allowed for the evaluation of positive selection

independently for these classes. The degree to

which parameters (including relative branch lengths,

nonsynonymous substitution rate, synonymous sub-

stitution rate, transition–transversion rate ratio and

codon frequencies) should be shared across these

classes can be decided using model comparison

techniques [26, 28]. Bao et al. [26] compared the

use of the Akaike information criterion (AIC) [39],

AICc [40] and a backward elimination procedure

based on the LRT and found, from simulation, that

the latter appeared to provide the best means of

choosing the appropriate model. However, even

when an a priori partitioning of sites into classes,

based on protein folding, is available this is likely

to model only a small proportion of the sitewise

variation in the substitution process. Furthermore,

power may be affected by sites which are conserved,

yet occur within putatively positively selected

protein domains [28].

An alternative to the use of a priori site classes,

which may fail to model site-to-site variation

adequately, and models that treat sites as completely

independent, resulting in over-parameterization, can

be obtained by the use of techniques that allow site

classes to be inferred from the data. One approach

is likelihood-based clustering (LiBaC) that allocates

sites to classes by maximizing a mixture log likeli-

hood, which takes account of uncertainty in site

allocation by averaging over classes of sites. This

model is implemented with an expectation–

maximization (EM) algorithm that successively opti-

mizes model parameters and adjusts a site allocation

vector (a vector indicating site class membership

for each site), given the proposed parameters.

The LiBaC method showed significantly improved

performance over REL models, especially when

relative branch lengths differed between partitions

[41]. Perhaps a limitation of the model is that the

number of distinct site classes is chosen beforehand,

by comparing the log likelihoods of REL models

with different numbers of discrete components. An

alternative to this is the use of Dirichlet process

models, which have been applied in the contexts

of modeling sitewise variation in the amino acid

replacement process [42] or selection pressure using

codon models [43]. Neither the site class member-

ship nor the number of site classes is fixed, but is

rather modeled as a mixture distribution using a

Dirichlet process. This approach was adopted within

a MCMC sampling framework to detect positive

selection. The implementation accounted for uncer-

tainty in the phylogeny and branch lengths resulting

in a more conservative identification of positive

selection than methods that first estimate these

parameters and treat them as fixed in subsequent

analysis [43].
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Detecting selection affecting specific
lineages
Codon models have been implemented that allow

variable rates of evolution between lineages. Codon-

based models that allow the rates of evolution to

vary between lineages have been applied to assess

evidence of adaptation affecting specific taxa or sets

of taxa [44, 45]. In the earliest implementations,

a separate value of ! was fitted along focal lineages

which were specified a priori [44, 45], but without

provision for site-to-site variation in selective

pressure. Subsequent models that allowed site- and

branch-specific selective pressure [23] were found to

be subject to high false positive rates [46], although a

modification of the original model showed improved

levels of false positives [24]. Given a biologically

plausible scenario, the prior specification of branches

may be acceptable, but in many cases there may be

no prior expectation regarding the selective processes

that have affected different branches of the phylog-

eny. In such cases, each branch can be allowed an

independent value (or distribution) of !, but this

approach requires corrections for multiple testing

[21] with a corresponding loss of power. Given large

phylogenies typically used in scans for lineage-

specific positive selection, it is computationally

impossible to test all possible alternatives of branch-

specific selective regimes. Kosakovsky Pond etal. [22]

provide a genetic algorithm alternative for model

selection, in which AIC is used as a measure of fitness

to select models with the most likely distribution of

selective regimes among branches of the phylogeny

[22]. The strength of this approach is that a larger

population of potential models can be evaluated

without the need for prior specification of lineages

with alternate selective regimes. It has, however,

been criticized for not providing a hypothesis test for

the presence of positive selection [21]. The issue boils

down to whether the traditional hypothesis testing

framework, with its notion of statistical significance,

is a more appropriate one in which to address

questions such as these, than the alternative approach

provided by criteria, such as the AIC. The latter

attempts to quantify the strength of evidence for

multiple models, none of which is assumed to be

‘correct’, rather than to measure the significance with

which a specific (and possibly a priori unlikely) null

hypothesis can be rejected. Both methodologies

are statistically sound, and the debate about their

relative merits has been conducted in a much

broader context [47].

Caveats for application of codon models
Phylogenetic uncertainty
Thus far, we have assumed that the phylogeny

on which we model molecular evolution is an

accurate representation of the evolutionary history of

the taxa. In general, even if we make the assumption

that a true phylogenetic relationship between a set

of sequences exists (i.e. the same relationship can be

used to describe the entire length of the alignment,

which is not true when recombination has occurred),

then that relationship is unknown and must be

inferred from the data. The usual approach is to

infer a single tree and then base subsequent infer-

ence on that tree. Empirical results have indicated

that inference of codon model parameters and/or

positive selection is not very sensitive to tree topo-

logy, as long as ‘a reasonably good phylogeny’

(i.e. one that has been estimated from the data) is

used [19].

Nevertheless, it is inevitable that using an incor-

rect tree would have some effect on inference. It is

possible to account for uncertainty in tree topology

using a Bayesian approach in which parameter

estimates are averaged over the space of possible

trees, weighted according to their individual poste-

rior probabilities. A number of Bayesian phyloge-

netic software packages exist, of which MrBayes [48]

is perhaps the most the commonly used one that

supports codon models. Such methods relax the

assumption that a specific tree is correct, but not

the assumption that a correct, though unknown, tree

exists. Perhaps a more important motivation for

using the Bayesian approach is that, in addition to

averaging over multiple plausible tree topologies, it

also averages over multiple plausible parameter

values, providing a natural way to take uncertainty

in parameter estimates into account. The use of this

approach for inferring positive selection was first

demonstrated by Huelsenbeck and Dyer [36], and

extended through the use of a Dirichlet process

model [43] (as discussed above). Further evaluation

of Bayesian models [37], demonstrated that some

form of Bayesian approach (either a full Bayesian

approach or the BEB method described above)

is important for medium-sized data sets (e.g. 30

taxa, 100 codons, with a tree length of up to two

substitutions per codon). However, the extra

computational cost of the fully Bayesian approach

as compared to BEB is unlikely to be justified except

when analyzing data sets with very low divergence

and hence low information content.
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Recombination
When the sequences under consideration have

recombined, it is no longer the case that there is a

single phylogeny describing their evolution. Instead,

different phylogenies are required to describe the

evolutionary relationships of the segments of the

alignment defined by recombination breakpoints.

The standard practice of assuming that a single

topology describes the entire alignment can lead to

arbitrarily high false positive rates when inferring

positive selection from recombining sequences

[49, 50].

We illustrate this in Figure 1, which shows

how the false positive rate increases as a function of

recombination rate. These results were obtained

using Codonrecsim [49] to simulate 100 neutrally

evolving data sets (! ¼ 1 at all sites) with codon

frequency parameters and transition–transversion rate

ratio matched to the Hepatitis D virus antigen

(HDV) data set used in one of the previous studies

[49]. For each replicate data set, positive selection

was inferred if there was a significant improvement

in the likelihood of the selection model (M2a) over

the neutral model (M1a). As the recombination

rate (�) is increased, the false positive rate rapidly

increases from below the acceptable level of 5%

towards 100% (Figure 1). For a data set with

parameters as described above, the significance level

(�¼ 5%) is a reasonable estimate of the false

detection rate only for �< 0.004. For �> 0.024,

positive selection is more likely to be inferred than

not, even if all sites evolve neutrally.

To illustrate the extent of the problem in real

sequences, we constructed 10-taxon intra-subtype

HIV-1 data sets of the env and gag genes and applied

this simulation methodology. At the recombination

rates estimated by the program LAMARC [51],

we obtained false inference of positive selection

in, respectively, 100 and 92 out of 100 replicates.

This means that the apparent signature of positive

selection in these sequences may have arisen as a

result of recombination in the absence of positive

selection, and that the recombination problem is

therefore of practical rather than just theoretical

importance.

One solution to this problem is a population

genetics approximation to the coalescent which

co-estimates recombination rate and selective pres-

sure [52]. An alternative solution involves identifica-

tion of recombination breakpoints and estimation of

a separate phylogeny for each recombinant partition.

The parameters of the codon models are then esti-

mated in the usual way, except that phylogenies and

branch lengths are partition-specific, while the

remaining parameters are shared across all segments

[53]. It also proved important to incorporate synony-

mous rate variation (see below) in this case, because

recombination can cause an apparent variation in the

synonymous rate [53]. Fortunately, the recombina-

tion breakpoints detected by off-the-shelf recom-

bination detection tools appear to be sufficient to

address the false positive problem, and may even give

better results than when the true recombination

breakpoints are known due to the fact that the

recombination breakpoints that are difficult to detect

typically have little effect on inference and can be

ignored in order to estimate phylogenies on longer,

more informative segments [53]. A similar approach

[54] incorporates the breakpoints estimated, using

a genetic algorithm for recombination detection

(GARD), into a FEL selection analysis, suitable for

the detection of individual adaptively evolving sites

in recombined sequences.

Synonymous rate variation
In the application of codon models to detect

selection, the synonymous substitution rate is often

Figure 1: The relationship between the recombination
rate and the rate of false inference of positive selection
in an example data set consisting of 10 taxa (using
a population-scaled substitution rate of �¼ 3.6, and
a population-scaled recombination rate varying from
�¼ 0 to 0.1 with increments of 0.002). Recombination
rates are measured as �¼ 2Nr, where N is the effective
population size and r is the number of recombination
events per inter-codon link per lineage per generation.
Hence, a recombination rate of �¼ 0.004 means that
a given inter-codon link at a given lineage experiences,
on average, one recombination event every 500N
generations.
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assumed to be constant across all sites in the align-

ment. Synonymous substitution rates may vary either

because of site-to-site variation in mutation rates or

because of selection acting to preserve functional

motifs at the nucleotide sequence level. The latter, in

particular, is now recognized as pervasive in protein-

coding sequences [55]. Synonymous changes in

protein sequences can cause, among many other

effects, changes in the stability of mRNA secondary

structure and formation or disruption of motifs that

affect splicing (e.g. exonic splice enhancers) [56].

Codon models to detect synonymous rate variation

applied to various published datasets revealed signif-

icant evidence of synonymous rate variation in 9 out

of 10 cases tested and highlighted the likelihood

of misleading inference of selection when this is

ignored [57]. Indeed, a recent evaluation of a

likelihood-based clustering method [41] demon-

strated the false inference of positive selection with

typical positive selection models (M2, M3, M8)

when nonselective components (synonymous rate,

transition/transversion rate ratio, relative branch

lengths) of the substitution process are constant

across sites. Selection on synonymous changes has

been modeled explicitly when such selection is

constant across all sites [58], (e.g. site-independent

codon usage bias), but remains an issue for selection

acting on only a subset of sites.

Recent modifications and extensions of
codon models
Independence of sites
Traditionally, models of sequence evolution have

included the assumption that distinct sites in a

sequence alignment evolve independently. This

significantly reduces model complexity and allows

the likelihood to be calculated as the product over

likelihoods of individual sites. However, site inde-

pendence is an assumption that in many cases is

grossly at odds with biological expectations. In real

data, the rate of evolution is often autocorrelated

along the sequence, with regions of conservation and

rapid evolution. The combination of hidden Markov

models to model rate variation along the sequence

and phylogenetic models describing sequence

evolution across taxa was introduced to model

autocorrelation of evolutionary rates [4, 59] and

subsequently adapted for use with codon models

[60]. Interestingly, in an analysis of HIV-1 genes,

dependency between adjacent sites was greater for

synonymous than for nonsynonymous substitutions

[60], potentially the result of tertiary structure, where

nonsynonymous mutations co-vary at sites that are

adjacent in the tertiary structure of the protein [12]

and not necessarily adjacent in the primary sequence.

Models that allow autocorrelated rates are useful

for accounting for local features of a sequence,

allowing distinct functional classes and rate classes

that are modeled as a Markov chain of hidden states.

Functional interactions between sites can also be

nonlocal, so that the rate and nature of sequence

change at one site may depend on the state present at

another site, which is not necessarily adjacent or

close to the site under consideration. Examples of the

latter include models of Watson–Crick pairs in RNA

stem regions [61–63] or of interacting amino acids

that maintain the stability of proteins [64–66]. The

most general models of sequence evolution that set

aside the assumption of independence of sites model

whole sequences as the states in the continuous-

time Markov process, resulting in rate matrices of

extremely high dimension [64] (4N�4N , where N is

the sequence length). Robinson et al. [64] proposed

a method to estimate such a model using a MCMC

method to sample model parameters and to sample

from possible sequence histories, proposed under a

simpler evolutionary model (see [67] for an efficient

method to sample from evolutionary histories). In

a related development, Poon et al. [68] set out to

identify interacting sites by reconstructing ancestral

states under a codon model that assumed site

independence and then estimated a Bayesian net-

work from an array of branch-specific synonymous

and nonsynonymous substitutions [68]. Interacting

sites within the network are identified as those at

which substitutions repeatedly co-occur along the

same branch. This method has facilitated the identi-

fication of clusters of spatially separated codons

that show dependent or compensatory mutations in

HIV-1 [68].

Models with context dependency have also been

used to account for elevated rates of mutation from

cytosine to thymine at CpG dinucleotides [3, 69,

70], the result of spontaneous deamination of

methylated cytosine [71]. These models, which

account for CpG-context dependence both within

codons, and across codon boundaries, have demon-

strated the significance of CpG hypermutation

within protein-coding genes [3, 70]. In the context

of viral evolution CpG gain and loss is modeled

[72] since unmethylated CpG dinucleotides may

trigger a host immune response [73], or increased
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methylation at CpG sites may negatively affect viral

gene expression [74]. Thus these models need to

consider selective constraints operating at the amino

acid or codon (codon usage bias) levels as well as the

mutational effects and potentially selective effects

of CpG dinucleotides at the nucleotide level.

Linking models of sequence evolution to population
genetics
The models of sequence evolution presented

above are typically applied to alignments of coding

sequences from multiple species and encompassing

evolution over long timescales. These models are

concerned with the rates at which specific substitu-

tions occur and, in turn, these rates are influenced by

the rate of mutation and by selection. Recently there

has been an upsurge of interest in relating parameters

of sequence evolution models to the quantities that

are of interest in population genetics, such as fitness

and associated fixation probability. This work builds

on a model of codon evolution that included

separate terms for the probability of a mutation and

the probability of fixation of a newly arisen mutant

allele [75]. In the original application, this approach

was used to model position-specific frequencies

of amino acids in order to estimate evolutionary

distances more accurately. More recently, a concep-

tually similar approach has been applied to estimate

the distributions of selection coefficients associated

with mutations in 5S ribosomal RNA [76, 77] and of

substitutions between synonymous codons [58].

These studies not only bridge the gap between

sequence models and population genetics, but also

include phenotype quantitatively in the sequence

model, adding considerably to the scope and

potential applications of sequence models.

Selection on codon usage can result from

differences in translation speed and accuracy between

synonymous codons (see [78] for a review). Standard

codon models, which include parameters describing

codon equilibrium frequencies, can be used to infer

positive selection even with strong codon usage bias,

regardless of whether the bias is mutational or due to

selection [79]. The novel codon model, FMutSel,

proposed by Yang and Nielsen [58], separates out the

selective and mutational components of codon

usage bias. By comparing the fit of this model to

a restricted form that models only the amino acid

frequencies, the authors estimate the strength of

selection acting on codon usage in large sets of

mammalian genes. FMutSel shows a significantly

improved fit to real data over standard codon

models, but is parameter rich, requiring separate

parameters to be estimated for every codon in

its full form; however, use of empirical rather

than estimated parameters appears to have only a

marginal effect on model likelihoods and parameter

estimates [58].

Integrating empirical and mechanistic models of codon
evolution
Although codon models generally fit protein-coding

sequence data far better than nucleotide models, at

the basic level they take no account of the nature

of the encoded amino acids and instead treat all

nonsynonymous substitutions as selectively equi-

valent. Given the differences in the physical and

chemical properties of amino acids, this omission

leaves a substantial proportion of the evolution-

ary process unmodeled. In functionally conserved

regions of an amino acid sequence, for example,

replacement of one amino acid with another with

similar properties may have a much smaller negative

effect on fitness than replacement with a radically

different amino acid. Models of amino acid seq-

uences based on observed replacements in closely

related and reliably aligned sequences have been

in widespread use since the since the 1970s [80].

Because they are based on real data these empirical

models naturally account for aspects of the amino

acid properties that affect the likelihood of amino

acid replacement. The empirical models also reflect

mutational differences between pairs of amino acids

implied by the genetic code; however, in this

framework it is not possible to separate out the

mutational and selective forces.

Considering the advantages of the mechanistic

approach taken by codon models and the value of

the empirical information contained in amino acid

models, it is natural to investigate methods for com-

bining these approaches. Kosiol et al. [81] proposed

an empirical model for codons, and estimated nearly

2000 free parameters describing the empirical

exchangeabilities of pairs of codons, assuming revers-

ibility, from a large database of aligned-coding

sequences. They incorporate these estimated codon

exchangeabilities into the framework of standard

mechanistic models of codon evolution and find

that they generally provide a significantly improved

fit to real data. In an alternative approach

Doron-Faigenboim et al. [82], developed a method

to incorporate a given empirical amino acid
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replacement matrix into the mechanistic framework.

Again the combined empirical and mechanistic

model provides a greatly improved fit to real data.

In contrast to standard mechanistic codon models,

both models are implemented such that they allow

nonzero instantaneous rates of substitution between

pairs of codons differing at more than 1 nt position.

Although interpretation of the ! parameters is more

difficult in the case of both of these models, it is

possible to use the merged empirical and mechanistic

models to infer positive Darwinian selection, though

whether they have a power advantage over standard

methods in this application is unclear. Another

potential application of these models is to phyloge-

netic inference, where the improved model realism

may offer a substantial advantage [81, 82]. In general,

the use of codon models in phylogenetics incurs

a significant computational cost due to the number

of free parameters to be estimated and due to the size

of the instantaneous rate matrix. Despite these costs,

codon models show improved model fit over both

standard nucleotide models, and nucleotide models

which have codon position-specific nucleotide

frequencies [6], suggesting that codon models are

highly appropriate for phylogeny estimation.

CONCLUSIONS
The trend towards increasingly biologically realistic

models and associated increase in the numbers of

free parameters to estimate carries a risk of over-

parameterization [1]. Perhaps a better alternative to

maximum likelihood methods in this context is

provided by Bayesian methods, which are generally

better suited to large parameterizations [83]. The

Dirichlet process [42, 43] that allows the data to

influence the complexity of the model (in this

case the number of distinct site classes) is useful in

this regard. In addition to variable evolutionary rate

parameters, models are being proposed that relax the

assumption that all sites share a set of character state

equilibrium frequencies. Relaxing this assumption

can be useful, for example, to model distinct amino

acid profiles [42], or fitness landscapes across sites

[84]. Directional selection models, which have

been applied in the context of the evolution of

drug resistance [85], or antigenic drift associated with

host-immune pressure [84, 86] also go beyond

modeling only evolutionary rates and instead con-

sider fitness effects associated with mutations involv-

ing specific amino acids. Nonetheless, these models

generally still assume a fitness landscape that is

constant in time, despite varying across sites. Station-

arity is the assumption that the Markov process,

along with its nucleotide, codon or amino acid

frequencies, does not change over time. This implies

that the process is at equilibrium, so that the observed

frequencies of the states of the Markov process are

also the equilibrium frequencies. Similarly, rates of

substitution are assumed to be time homogenous.

Nonstationary models have been applied in the

nucleotide and amino acid contexts, specifically for

the estimation of phylogenies when base compo-

sitions vary between closely related taxa [87–92].

Furthermore, selective constraints are likely to change

over time [93–95], such that codon models incor-

porating variable selective pressure offer improved

model fit [96]. Given that adaptive evolution, almost

by definition, implies a process which is both direc-

tional and time heterogeneous, realistic descriptions

of time-variable directional selective pressures will be

of particular interest in models that seek to understand

how adaptation shapes the evolution of molecular

sequences.
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Key Points

� Phylogenetic models of sequence evolution typically make use
of the formalism of the continuous-time Markov process and
are inwidespread use inmolecular evolution.

� Models treating the 61sense codons as the states of the process
(codon models) have the advantage of capturing both themuta-
tional process operating at the nucleotide level and selective
processes operating at the protein level.

� Thesemodels are used to detect selection within genes, at sites
within genes, along lineages and at sites along lineages.

� Caveats concerning the use of codon models to estimate
evolutionary selective pressures acting on protein-coding
sequences have recently been highlighted. Some of these,
including uncertainty in phylogeny and parameter estimates,
and sequence recombination have been addressed through the
development of newmethods.

� Further developments have improved the biological realism of
codon models, including integration of codon models with
empirical amino acid models that help to account for amino
acid properties.

� More recently, models have been developed that allow interac-
tions between sites and include parameters describing fitness.
The latter go some of theway towardsbridging the gapbetween
models of sequence evolution and population genetics theory.

� Future developments in codon models may include further
relaxing assumptions such that temporal heterogeneity in both
mutational and selective processes can bemodeled.
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